余角、补角、对顶角:教案
学习目标
1.在具体情境中了解对顶角,知道对顶角相等;
2.经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;
3.会运用互为余角、互为补角、对顶角的性质来解决问题.
一、知识梳理
1、余角概念:
如果两个角的和是90°,那么这两个角互为余角,简称互余.
2、补角概念:
如果两个角的和是180°,那么这两个角互为补角,简称互补.
3、注意点:
互为余角、互为补角仅仅表明了两个角的数量关系,并没有限制角的位置关系.
4、邻补角概念:
两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
5、同一个角的补角与余角的关系:
同一个角的补角比它的余角大 90°.
6、余角补角的性质:
同角的余角相等,同角的补角相等.
等角的余角相等,等角的补角相等.
7、对顶角概念:
一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角.(对顶角由两条相交直线产生)
8、对顶角相等.
9、数对顶角的对数:
二、典型例题
例1:判断正误:
(1)一个角一定小于它的余角,也小于它的补角.
(2)如果两个角互补,那么这两个角是锐角和钝角.
(3)如果三个角的和为180°,则这三个角互补.
(4)如果两个角相等,那么她们的补角也相等.
(5)若∠1=∠2,则∠1和∠2是对顶角.
(6)互补的角就是平角.
(7)互余的两个角一定都是锐角.
(8)不相等的两个角不是对顶角.
解析:
(1)错误,如60°大于它的余角30°,100°大于它的补角80°.
(2)错误,两个角可以都为直角.
(3)错误,互补是两个角之间的数量关系.
(4)正确.
(5)错误,比如一个角的角平分线,把这个角分成2个相等的小角不是对顶角.
(6)错误,两个互补的角的度数之和是平角的度数.
(7)正确.
(8)正确.
例2
解析:
例3:
一个角的余角比它的补角的一半还少20°,这个角的度数为______°.
分析:
这种题目难度不大,可以直接解设这个角的度数为x,表示出这个角的余角和补角,根据题目,列出方程.
当然本题还有一种做法,即设这个角的补角度数为x,表示出这个角的余角,同时,还要利用一个隐含的数量关系,同一个角的补角比它的余角大 90°.
解答:
三、思维提升
1、找余角补角
例1:
如图,O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?
分析:
找互余的角,首先要找直角内部的射线将直角分成的2个角,或者可以形象的称为“邻余角”.
其次,再找有没有其他角和“邻余角”中的一个相等,则和另一个也互余.
找互补的角,首先找找有没有邻补角.再找有没有其他角和邻补角中的一个相等.
这里∠DOE相邻的余角有2个,∠EOF,∠DOB,再找找有没有和这两个角相等的角.
∠DOE在图中没有邻补角,因此,只能找和它相等的角,不难发现是∠AOF,找∠AOF的邻补角,再找和∠AOF的邻补角相等的角.
解答:
∵∠AOE=∠FOD=90°,∴∠BOE=90°
∠3+∠4=90°,∠3+∠2=90°,
∴∠2=∠4,
∵OB平分∠COD,
∴∠4=∠5,∠2=∠5,
∴∠DOE互余的是∠2、∠4、∠5;
∵∠1+∠2=90°,∠3+∠2=90°,
∴∠3=∠1
∵∠1+∠BOF=180°,
∠BOF=∠2+∠3+∠4=∠5+∠3+∠4=∠EOC,
∴与∠DOE互补的角是∠BOF、∠EOC.
1、找余角补角
例2:
如下图,AOE是一条直线,从点O引射线OB,OC,OD,若∠AOC=∠COE=∠BOD=90°,那么图中互余的角有哪几对?互补的角有哪几对?
分析:
思路与例1一致,先找位置相邻的余角,找邻补角,然后找有没有其他角与其中一个相等的角,对于两个直角,也别忘了它们互补.
解答:
∵∠AOC=∠COE=∠BOD=90°
∴∠1+∠2=90°
∠2+∠3=90°,
∠3+∠4=90°,
∠1+∠4=90°,
互余的角有4对,
∠1与∠2,∠2与∠3,∠3与∠4,∠1与∠4,
∴∠1=∠3,∠2=∠4
∵∠1+∠DOE=180°,∴∠3+∠DOE=180°,
∠4+∠AOB=180°,∴∠2+∠AOB=180°,
∠AOC+∠COE=180°,
∠AOC+∠DOB=180°,
∠DOB+∠COE=180°,
互补的角有7对,
∠1与∠DOE,∠3与∠DOE,
∠4与∠AOB,∠2与∠AOB,
∠AOC与∠COE,
∠AOC与∠DOB,
∠DOB与∠COE.
1、找余角补角
例3:
如图,直线 AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线,
(1)写出∠DOE的补角;
(2)要若∠BOE=62°,求∠AOD和∠EOF的度数;
(3)求∠DOF的度数?
分析:
(1)要找∠DOE的补角,可以找它的邻补角,也可以找与∠DOE相等的角,再找出它的补角.
(2)要求∠AOD,不一定非要用角度之和,可以用180°减去∠BOD,要求∠EOF,可以求∠AOE,再求其一半.
(3)双角平分线问题,找到出现两次的边OE,则∠DOF看作∠FOE+∠DOE,利用一半加一半可求.
解答:
2、用方程思想
例1:
如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.∠BOF=30°,则∠AOC=______°.
分析:
要求∠AOC,其实就是求∠BOD.要求∠BOD,根据角平分线条件,可设∠EOD为x.,然后表示出∠EOF,进而表示出∠COE,则∠COE+∠EOD=180°,作为方程的相等关系.
解答:
∵OE平分∠BOD,∴∠BOD=2∠BOE,
∵OF平分∠COE,∴∠COF=∠FOE,
∴设∠BOE=x°,则∠BOD=2x°,
∵直线AB、CD相交于点O,
∴∠AOC=∠BOD=2x°,∠EOF=∠COF=(x+30)°,
则∠COF+∠EOF+∠DOE=2(x+30)+30=180,
解得:x=40,
故∠AOC=80°.
2、用方程思想
例2:
如图,直线AB、CD、EF相交于点O,∠AOD=∠BOD,且∠DOF与∠BOF的度数之比为3:1,求∠COE的度数.
分析:
要求∠COE,其实就是求∠FOD.而∠DOF与∠BOD的度数比已知,则可以设x,利用它们的差是∠BOD求解,而∠AOD=∠BOD,它们又是邻补角,则∠BOD的度数很快可知.
解答:
解设∠BOF=x°,∠DOF=3x°
∴∠BOD=∠DOF-∠BOF=2x°
∵∠AOD=∠BOD,∠AOD+∠BOD=180°,
∴∠BOD=90°,
2x=90,x=45
∠DOF=135°.
《余角、补角、对顶角》同步测试
1. 如果一个角是36°,那么( )
A.它的余角是64° B.它的补角是64°
C.它的余角是144° D.它的补角是144°
2.现有下列说法:①锐角的余角是锐角;②钝角没有余角;③直角的补角是直角;④两个锐角互余.其中正确说法的个数是( )
A.4 B.3 C.2 D.1
《余角、补角、对顶角》测试
1.一个角是36°,则它的余角是_______,它的补角是_______.
2.∠A=50°17',则它的余角等于_______;∠B的补角是102°38'1',则∠B=_______.
3.已知∠α与∠β互余,且∠α=40°,则∠β的补角为_______度.
4.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角是_______.
5.如图,点O在直线PQ上,OA是∠QOB的平分线,OC是∠POB的平分线,那么下列说法错误的是 ( )
A.∠AOB与∠POC互余
B.∠POC与∠QOA互余
C.∠POC与∠QOB互补
D.∠AOP与∠AOB互补
6.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角 ( )
A.等于45°
B.小于45°
C.小于或等于45°
D.大于或等于45°
7.判断:
(1) 90°的角叫余角,180°的角叫补角. ( )
(2)如果∠1+∠2+∠3=180°,那么∠1、∠2与∠3互补. ( )
(3)如果两个角相等,则它们的补角相等.( )
(4)如果∠α>∠β,那么∠α的补角比∠β的补角大. ( )
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
高中生物课程教学设计方案
思想道德修养与法律基教案第二章范文
初中历史高效课堂教学计划五篇
代数式苏教版数学初一上册教案
代数式苏教版数学初一上册教案
初中数学三角形知识点整理
正数和负数人教版数学七年级上册教案
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
小学五升六数学知识点必看
小学一年级数学知识点必备资料总结
高中数学学习方法与技巧必看
七年级上册数学期末知识点总结
初一上册数学全册教案最新
中考数学知识点归纳总结整理
数学九年级上册知识点必看
高考知识点归纳总结数学
小学一年级下册数学必备知识点
高考理科数学知识点整理