高一数学必修五公式整理
第一章 三角函数
abc
???2R(R为三角形外接圆半径)一.正弦定理: sinAsinBsinC
a?
a?2RsinA(sinA?)?2R?
b?
)
推论:a:b:c?sinA:sinB:sinC 变形:?b?2RsinB(sinB?2R?
c?
c?2RsinC(sinC?)?2R?
b2?c2?a2
cosA? 2bc
二.余弦定理: a2?b2?c2?2bccosA
a2?c2?b2
cosB? b2?a2?c2?2accosB2ac
a2?b2?c2c2?a2?b2?2abcosC cosC?
2ab
三.三角形面积公式:S?ABC?
111
bcsinA?acsinB?absinC, 222
第二章 数列
一.等差数列: 1.定义:an+1-an=d(常数)
2.通项公式:an?a1??n?1??d或an?am??n?m??d
3.求和公式:Sn?
n?1?n?2
?na1?
n?n?1?d 2
4.重要性质(1)m?n?
二.等比数列:1.定义:
p?q?am?an?ap?aq
(2) Sm,S2m?Sm,S3m?S2m仍成等差数列
an?1
?q(q?0) an
n?1
n?m
2.通项公式:an?a1?q或an?am?q3
.求和公式: Sn?na1( ,q?1)
a1(1?qn)a1?anq
Sn??q?1)
1?q1?q
4.重要性质(1)m+n=
三.数列求和方法总结:
p+q?aman=apaq
(2)Sm,S2m-Sm,S3m-S2m仍成等比数列(q≠-1或m为奇数)
1.等差等比数列求和可采用求和公式(公式法).
2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.
注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
(2)若一个等差数列与一个等比数列的对应相乘构成的新数列求和,采用(错位相减法). 过程:乘公比再两式错位相减
(3)若数列的通项可拆成两项之差,通过正负相消后剩有限项再求和的方法为(拆项相消法). 常见的拆项公式:
1.
1111
=(-) 3.
(2n-1)(2n+1)22n-12n+1 15.=(n+1-n)
n+n+1
111
=- 1 1 1 1
2.=(- )n(n+1)nn+1n(n+k)knn+k
4.
1111
=[-]
n(n+1)(n+2)2n(n+1)(n+1)(n+2)
四.数列求通项公式方法总结:
1.找规律(观察法) 2.为等差等比(公式法) 3.已知Sn,用(Sn法)即用公式an=?4. 叠加法 5.叠乘法等
(n=1)?S1
()S-Sn≥2n-1?n
第三章:不等式
2
2
一.解一元二次不等式三部曲1.化不等式为标准式ax+bx+c>0或 ax+bx+c0)。
2.计算△的值,确定方程ax2+bx+c=0的根。
3.根据图象写出不等式的解集.
特别的:若二次项系数a为正且有两根时写解集用口决:(不等号)大于0取两边,小于0取中间
二.分式不等式的求解通法:
(1)标准化:①右边化零,②系数化正.
(2)转 换:化为一元二次不等式(依据:两数的商与积同号)
f(x) 1>0?f(x)?g(x)>0 g(x)
f(x) (2)≥0?f(x)?g(x)≥0且g(x)≠0
g(x)
f(x)f(x)
(3≥a?-a≥0,再通分
g(x)g(x) 三.二元一次不等式Ax+By+C>0(A、B不同时为0),确定其所表示的平面区域用口诀:同上异下 (注意:包含边界直线用实线,否则用虚线)
常用的解分式不等式的同解变形法则为
四.线性规划问题求解步骤:画(可行域)移(平行线)求(交点坐标,解,最值)答.
a+b
≥a≥0,b≥0)
(当且仅当a=b时,等号成立)五.基本不等式
:
旧知识回顾:1.求方程ax+bx+c=0的根方法:
(1)十字相乘法:左列分解二次项系数a,右列分解常数项c,交叉相乘再相加凑成一次项系数b。
2
(2)求根公式:x1,2
-b± =
2a
2
0a≠0)的两根,则有x1+x2=-2.韦达定理:若x1,x2是方程ax+bx+c=(
M
3.对数类:logaM+logaN=logaMN logaM-logaN=logaN logaMN=NlogaM(M.>0,N>0)
bc
,x1?x2= aa
高二数学必修五知识点梳理
●解三角形
1. ?
2.解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?
3.三角形面积公式 ,如三角形的三边是 ,面积是?
4.求角的几种问题: ,求
△面积是 ,求 . ,求cosc
5.一些术语名词:仰角(俯角),方位角,视角分别是什么?
6.三角形的三个内角a,b,c成等差数列,则 三角形的三边a,b,c成等差数列,则
三角形的三边a,b,c成等比数列,则 ,你会证明这三个结论么?
数列
★★1.一个重要的关系 注意验证 与 等不等?如已知
2. 为等差
为等比
注:等比数列有一个非常重要的关系:所有的奇(偶)数项 .如{an}是等比数列,且
★★3.等差数列常用的性质:
①下标和相等的两项和相等,如 是方程 的两根,则
②在等差数列中, ……成等差数列,如在等差数列中,
③若一个项数为奇数的等差数列,则 , ------
4.数列的项问题一定是要研究该数列是怎么变化的?(数列的单调性)——研究 的大小。
数列的(小)和问题,
如:等差数列中, ,则 时的n= .等差数列中, ,则 时的n=
5.数列求和的方法:
①公式法:等差数列的前5项和为15,后5项和为25,且 ★②分组求和法:
★③裂项求和法——两种情况的数列用:
★★④错位相减法——等差比数列(如 )——如何错位?相减要注意什么?最后不要忘记什么?
6.求通项的方法
①运用关系式 ★②累加(如 )
★③累乘(如
★★④构造新数列——如 ,a1=1,求an=?
(一定要会) ,求
●不等式
1.不等式 你会解么? 你会解么?如果是写解集不要忘记写成集合形式!
2. 的解集是(1,3),那么 的解集是什么?
3.两类恒成立问题 图象法—— 恒成立,则 =?
★★★★分离变量法—— 在[1,3]恒成立,则 =?(必考题)
4.线性规划问题
(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界
(2)目标函数改写: (注意分析截距与z的关系)
(3)平行直线系去画
5.基本不等式的形式 和变形形式
如a,b为正数,a,b满足 ,则ab的范围是
6.运用基本不等式求最值要注意:一正二定三相等!
如 的最小值是 的最小值 (不要忘记交代是什么时候取到=!!)
一个非常重要的函数——对勾函数 的图象是什么?
运用对勾函数来处理下面问题 的最小值是
7.★★两种题型:
和——倒数和(1的代换),如x,y为正数,且 ,求 的最小值?
和——积(直接用基本不等式),如x,y为正数, ,则 的范围是?
不要忘记x ,xy,x2+y2这三者的关系!如x,y为正数, ,则 的范围是?
★★★★一类必考的题型——恒成立问题(处理方法是分离变量)
如 对任意的x∈[1,2]恒成立,求a的范围? 在[1,3]恒成立,则 =?
(1)已知a,b为正常数,x、y为正实数,且 ,求x+y的最小值。
(2) 已知 ,且 ,求 的值
例2.已知 ,(1)求 的和最小值。(2)求 的取值范围。
(3) 求 的和最小值。
解析:注意目标函数是代表的几何意义.
解:作出可行域。
(1) ,作一组平行线l: ,解方程组 得解b(3,1), 。解 得解c(7,9),
(2) 表示可行域内的点(x,y)与(0,0)的连线的斜率。从图中可得, ,又 , 。
(3) 表示可行域内的点(x,y)到(0,0)的距离的平方。从图中易得, ,(of为o到直线ab的距离), 。 , , , 。
点拨:关键要明确每一目标函数的几何意义,从而将目标函数的最值问题转化为某几何量的取值范围.
高一数学必修五综合练习
一、填空题:(每小题5分,共55分)
21.已知集合M?{x?2?x?2},N?{x-x?2x?3?0},则集合M?N;
2.在△ABC中,若sinA∶sinB∶sinC = 7∶8∶9,则cosA=____ __;
3.
已知数列??,那么8是这个数列的第 项;
4.若不等式x?2ax?a?0对一切实数x都成立,则实数a的范围为
5.设数列{an}的通项公式为an??2n?27,Sn是数列{an}的前n项和,则当n?_______时,Sn取得值;
6.在?ABC中,已知a?4,b?6,?C?120?,则sinA的值是_________;
7.数列?an?中,a1?1,2an?12?2an?3,则通项an?
8.?ABC中,已知a?4,?B?45?,若解此三角形时有且只有解,则b的值应满足_____ ___;
9.已知点P(x,y)在经过两点A(3,0),B(1,1)的直线上,那么2?4的最小值是_ _;
10.已知数列?bn?是首项为?4,公比为2的等比数列;又数列?an?满足a1?60,an?1?an?bn,则数列xy?an?的通项公式an?_______________;
11.如图所示是毕达哥拉斯的生长程序:正方形上连接着一个等腰直角三角形,等
腰直角三角形的直角边上再连接正方形?,如此继续.若共得到1023个正方形,
设起始正方形的边长为,则最小正方形的边长为 ; 2
二、解答题(每小题9分,共45分)
12.?ABC中,已知a、b、c成等差数列,SinA、SinB、SinC成等比数列,试判断△ABC的形状.
213.某村计划建造一个室内面积为72m的矩形蔬菜温室。在温室内,沿左、右两侧与后侧内墙各保留1m宽
的通道,沿前侧内墙保留3m宽的空地。 当矩形温室的边长各为多少时?蔬菜的种植面积,种植面积是多少?14.设数列{an}的前n项和为Sn?2n2,{bn}为等比数列,且a1?b1,b2(a2?a1)?b1.
⑴求数列{an}和{bn}的通项公式.⑵设cn?
15.已知二次函数f(x)的二次项系数为a,且不等式f(x)?2x?0的解集为(1,3).
⑴若方程f(x)?6a?0有两个相等实数根,求f(x)的解析式.
⑵若f(x)的值为正数,求a的取值范围.
216.在?ABC中,设角A、B、C所对的边分别为a、b、c,已知A?C?2B,并且sinA?sinC?cosB,an,求数列{cn}的前n项和Tn. bn
三角形的面积S
?ABC?a,b,c.1.(-1,2) 2.
9.?22 3. 11 4. 0?a?1 5.13
6. 7.log2(3n?
1) 8.b?或b≥4
319n?1?64 11.1 32
a?c ①又∵sinA,sinB,sinC成等比数列, 2
a?c222)?ac,∴(a?c)2?0, ∴sinB?sinA?sinC,∴b?ac ②将①代入②得:(2
∴a?c代入①得b?c,从而a?b?c,∴△ABC是正△ 12.解:∵a,b,c成等差数列,∴b?
13.解:设矩形温室的左侧边长为am,后侧边长为bm,则ab?72,蔬菜的种植面积
s?(a?4)(b?2)?ab?4b?2a?8?80?2(a?
2b)≤80??32(m2)
当且仅当a?2b,即a?12,b?6时,Smax?32
14.解:⑴当n?1时,a1?S1?2;当n≥2时,an?Sn?Sn?1?2n2?2(n?1)2?4n?2,故{an}的通项公式为an?4n?2,设{bn}的通项公式为q,则b1?2,q?
⑵∵cn?112,?bn?b1qn?1?2?n?1,即bn?n?1 444an4n?2??(2n?1)4n?1,∴Tn?c1?c2???cn?[1?3?41?5?42???(2n?1)4n?1] 2bn4n?1
4Tn?[1?4?3?42?5?42???(2n?3)4n?1?(2n?1)4n] 两式相减得:
113Tn??1?2(41?42?43???4n?1)?(2n?1)4n?[(6n?5)4n?5]∴Tn?[(6n?5)4n?5] 39
?015.解:⑴由f(x)?2x解集为(1,3),∴f(x)?2x?a(x?1)(x?3),且a?0,因而
f(x)?ax2?(2?4a)x?3a由方程f(x)?6a?0得ax2?(2?4a)x?9a?0,
因为方程②有两个相等的实根,∴??0?a?1或?111263,而a?0,∴a??∴f(x)??x?x? 55555
2
2⑵由f(x)?ax?2(1?2a)x?3a得,∴f(x)max?a?0,a?4a?1?2??
∴?a?4a?1?a??2或a?0??a?
?2?a?0
216.解:∵A?C?2B∴B?60?,所以sinAsinC?cos60??11 ①
又S?ABC??acsinB,得42
sinAsinCsinA21sinC2sinAsinC1ac?16 ② ?()??(),所以??
aca64cac8
asinBa2?c2?b21?8sinB?8sin60??cosB??, 由b?sinA2ac2a2?c2?b2?ac,(a?c)2?b2?3ac,(a?c)2?48?48?
96,a?c?③
与②联立,得a?c?
,或a?c?
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
初中地理会考必考考点
求职个人简历模板五篇
初中竞赛重要数学公式归纳总结
中考生物考点解析
初中竞赛重要数学公式归纳总结
高考必考重要数学公式归纳
高考数学复习重点公式总结
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
初三数学公式总结归纳整理
高考学生必背数学公式总结
三年级数学教学反思心得
3年级数学质量提升的教学总结五篇
最新小学数学老师季度教学总结
数学课堂习惯的规范教学总结范文
苏科版初中数学公式整理总结
中考数学公式大全归纳
数学课堂学习习惯的规范教学总结范文
幼儿园数学的教学总结模板