北师大版数学六年级下册教案2021范文1
教学内容:教科书第1页的例1、试一试和练一练,练习一的第1~3题。
教学目标:
1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
教学过程:
一、教学例1
1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。
学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?
提出要求:根据这两个已知条件,你能求出哪些问题?
引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。
在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?
2、引导思考: 这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?
小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。
启发:根据上面的讨论,你打算怎样列式解答这个问题?
学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?
3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?
学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?
联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。
提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?
学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?
二、教学“试一试”
1、出示问题:原计划造林比实际少百分之几?
启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?
学生作出猜想后,暂不作评价。
提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?
2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?
小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。
三、指导完成“练一练”
1、要求学生自由读题。
2、提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?
学生讨论后,要求他们各自列式解答。
3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?
学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。
四、指导完成练习一第1~3题
1、做练习一第1题。
可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。
2、做练习一第2题。
先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。
3、做练习一第3题。
先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。
五、全课小结
通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?
北师大版数学六年级下册教案2021范文2
教学目标:
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:
一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高 6 厘米,体积 = ?
(2)底面半径是 2 分米,高10分米,体积 = ?
(3)底面直径是 6 分米,高10分米,体积 = ?
3、认识圆锥(课件演示),并说出有什么特征?
二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)
1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?
学生回答,教师板书:
圆柱------(转化)------长方体
圆柱体积计算公式--------(推导)长方体体积计算公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)
(学生得出:底面积相等,高也相等。)
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?
(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)
a、谁来汇报一下,你们组是怎样做实验的?
b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)
教师:同学们得出这个结论非常重要,其他组也是这样的吗?
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
(板书圆锥体体积计算公式)
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
(教师给体积公式与“等底等高”四个字上连线。)
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3
=底面积 × 高×1/3
V = 1/3Sh
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
课件出示:
想一想,讨论一下:?
(1)通过刚才的实验,你发现了什么?
(2)要求圆锥的体积必须知道什么?
学生后讨论回答。
三、 应用求体积、解决问题。
1、口答。
(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?
2、出示例题,学生读题,理解题意,自己解决问题。
例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
a、 学生完成后,进行小组交流。
b 、 你是怎样想的和怎样解决问题的。(提问学生多人)
c 、 教师板书:
1/3×19×12=76(立方厘米)
答:它的体积是76立方厘米
3 、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
5、比较:例1和例2有什么不同的地方?
(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。
北师大版数学六年级下册教案2021范文3
教学目标:
1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。
2.培养学生观察、实践能力。
3.使学生在解决实际问题中感受数学与生活的密切联系。
教学重、难点:结合实际问题运用所学的知识
教学理念:
1.数学源于生活,高于生活。
2.学生动手实践,自主学习与合作交流相结合
教学设计:
一 回顾旧知:
1.圆锥的体积公式是什么? S、h各表示什么?
2.求圆锥的体积需要知道什么条件?
3.还知道哪些条件也能计算出圆锥的体积?怎样计算?
投影出示:
(1)S = 10,h = 6 V = ?
(2)r = 3,h = 10 V = ?
(3)V = 9.42,h = 3 S = ?
二 运用知识,解决实际问题
1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗? 怎么办呢?
2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米
(1)麦堆的底面积:__________________
(2)麦堆的体积:____________________
3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)
4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方 米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)
5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多 少立方分米的木料?
(1)(出示图)什么情况下削出的圆锥是的?为什么?
(2)削去的木料占原来木料的几分之几?
(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是的呢?
三 综合练习
1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。
2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米
3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?
北师大版数学六年级下册教案2021范文4
一、学习内容:
教师提供 小学数学六年级下册14页----17页。
二、学生提供:
等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。
三、学习目标:
1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
四、重点难点:
重点:圆锥的体积计算。
难点圆锥的体积公式推导。
关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。
五、学习准备:
等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。
看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?
长方形的长等于三角形的底,长方形的宽等于三角形的高。
你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?
三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。
六、布置课前预习
点拨自学
1、圆柱和圆锥有哪些相同的地方?
2、圆柱和圆锥有哪些不同的地方?
3、圆锥的体积和圆柱的体积有什么关系呢?
请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。
七、交流解惑:
它们的底面积相等,高也相等
圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……
动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。
通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流
组际解疑
老师点拨
八、合作考试
1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)
2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底
面半径约3分米,高约2.7分米,求沙堆的体积。
(只列式不计算)
3、在打谷场上,有一个近似于圆锥的小麦堆,测
底面直径是4米,高是1.2米。每立方米小麦约
重735千克,这堆小麦大约有多少千克?
(只列式不计算)
4、如图,求这枝大笔的体积。
(单位:厘米)
(只列式不计算)
5、将一个底面半径是2分米,高是4分米的圆柱
形木块,削成一个的圆锥,那么削去的体积
是多少立方分米?(口算)
九、自我总结:
通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。
十、教学反思:
本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。
北师大版数学六年级下册教案2021范文5
教学内容:
北师大版教学六年级《圆柱的体积》
教学目标:
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:
理解圆柱体积计算公式的推导过程。
教具准备:
圆柱体积演示教具。
教学过程:
一、旧知铺垫
1、谈话引入
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)
这节课我们就来学习圆柱的体积。
二、自主探究,解决问题
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
(板书:圆柱的体积=底面积×高)
用字母表示:(板书:V=Sh)
三、巩固新知
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成“试一试”
3、“跳一跳”:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?
五、布置作业
练一练1-5题。
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
六年级下册数学比例单元教案范文
榜样5大学生个人观后感五篇最新
辽宁中考半命题作文范文五篇
六年级下数学优秀教案模板
六年级下册数学比例单元教案范文
六年级下数学优秀教案模板
最新人教版小学六年级数学复习教案模板
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
人教版六年级下册数学教案设计与反思模板
六年级数学教案下册模板
最新北师版小学数学六年级下册教案范文
六年级下册数学教案书最新文案
最新六年级数学下册教案青岛版例文
一年级数学下册第七单元教案例文
六年级上册数学鼎尖教案模板
六年级数学公开课教案例文
六年级数学试卷讲评课教案最新例文
北师大版小学六年级数学教案模板