数学学习计划八篇

阿林老师

数学学习计划 篇1

  (一)制定合理学习计划,及时检查落实。

  1.制定符合自己的实际情况的学习计划。

  2、要有明确的学习目标。

  通过一个阶段的学习,要达到什么水平,掌握那些知识等,这 些都是在制定学习计划前应该非常明确。

  3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来 促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。

  4、 要合理安排计划。 计划不能太古板, 可根据执行过程中出现的新情况及时做适当调整。

  5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学 习目标。

  (二)做好课前预习,提高听课效率。

  通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先 理解感知新课的内容(如概念、定义、公式、论证方法等) ,为顺利听懂新课扫除障碍。

  1、预习的最佳时间是晚上的 8:00 到 9:00 这一段时间,单科的预习的时间一般控制 在 15 分钟到 30 分钟左右。

  2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。

数学学习计划 篇2

  1、针对自己的薄弱学科的学习态度、学习方法、学习目标进行反思,调整。

  2、在家长的指导下,写好自己切实可行的暑假生活、学习计划。(安排好每天复习进度的明细内容)

  3、把练习卷上做正确的题目进行整理,确认自己已经掌握了哪些知识,具备了哪些运用能力,树立自己对本学科的信心。

  4、把练习卷上做错的题目进行整理、抄录,打开教科书,逐题进行分析,找到错误的关键之处,进行认真的订正后,再到教材上找到相关类型的题目,进行练习、强化。(尽可能用自己的力量解决问题)

  5、遇到无法解决的困难,按教科书的学习顺序进行梳理罗列。了解自己学习问题的共性薄弱点,然后可以请老师一起帮助解决。

  6、每周二次带着学科的不懂之处和老师一起分析、解决问题。回家后运用老师解决问题的方法进行自我强化练习,填补自己的学习漏洞。(这一点必须按照教材由浅入深的学习顺序,切不可东一榔头西一棒的无序)

  7、每次完成习题的订正,将错题订正的全过程,牢牢地记在脑海里(背出),渐渐地形成解题方法的量的积累。

  8、一星期打两次球,游三次泳,增加运动,提高体能。(也可以听音乐等,做自己有兴趣的事)

  9、一星期跟着父母学做两次家常菜,如炒茄子,蒸鱼之类,再做一些力所能及的家务。

数学学习计划 篇3

  暑期是各位同学查漏补缺的黄金时期, 也是某些想在学习上逆袭的同学的最佳时 间。 特别是对于高二升高三的同学, 更应该很好的利用这个暑假, 为高三的紧张 复习状态做好充分的准备。 为了帮助同学们高效利用这个暑假, 下面帮助各位总 结了高二升高三的暑期数学学习计划及建议。

  (一)把高二知识巩固好

  从知识角度来看, 高二的解析几何、 数列是高考的重中之重 (另一重点内容 是函数与导数),高考题经常有解析与数列的综合题。因为刚学过,多数知识点 还熟悉,要在此基础上提高到(或接近)高考要求,相对来说比较容易。有些学 校在高三第一学期就开始做综合试卷, 如果能掌握好高二知识, 会做得更好, 这 对以后的学习有促进作用,能帮助你形成良性循环。

  (二)注重归纳总结

  平时在校由于作业多, 无暇静下来做些归纳总结工作, 而这对能力的提高会 有很大的帮助。 总结可以按章节, 也可以按知识点。 比如对圆锥曲线一章可按如 下进行:

  ( 1 )基本概念:曲线和方程定义及应用、圆锥曲线的定义及标准方程、 直线和圆锥曲线的位置关系等;

  ( 2 )基本题型的常见解法、特殊解法,如求两 圆相交弦所在直线的方程, 若求交点, 不仅计算繁而且还会出现运算错误, 用曲 线系方程则很简单。

  ( 3 )易错问题剖析;

  ( 4 )本章涉及哪些数学思想方法。对 思想方法的归纳要通过具体例子来实现, 比如中点弦问题, 涉及弦长, 则用韦达 定理,不涉及弦长,则用点差法。

  (三)弥补薄弱环节

  有些同学在某章节学得不太好, 可以集中时间补一下。 首先要理解基本概念, 记住公式和定理, 千万不要一边看公式一边做题目, 这样效果不好, 要通过做题 记住公式。其次要做熟常见的题型,并掌握其变式,要注意解题方法的总结,做 题不要追求多,而要追求解题质量,提高效率。第三要特别重视定义的运用,还 有努力把会做的题做对, 很多同学丢分相当严重, 平时都认为是粗心, 其实不尽 如此,是多方面原因造成的,应及早找出原因,尽快改正。

  (四)腾出时间挑战新题

  不少同学做题只是做一些老师讲过或是会做的题目,这类题目多是巩固性 的, 反复操练没有太大必要。 要能腾出时间去做一些相对比较新的题目, 这些题 不一定难, 但是以前自己没见过的问题, 可以多花些时间从各个不同的角度去思 考,这里不仅关心结果,更关注过程,这样的心理体验是必须经历的,它有助于 高三阶段综合能力的提高。

  (五)做些开发思维的题目

  有些学校在放假前就发了高三的复习用书,要求学生在暑假做甚至要求做 完。 对重点中学中等以上水平的同学不会有太大困难, 但对中等水平以下和普通 中学的多数同学会有不同程度的困难。 对此要根据各人的具体情况而定, 实在做 不出也不要勉强, 那毕竟是高三第一轮的学习任务。 有些同学做了, 但上课时又 认为自己会做了, 不认真听课, 最终效果不好。 有些基础好的同学由于超前学习 太多, 以至于早早就进入状态, 到高考时不一定处在最佳状态, 这部分同学要注 意调节学习节奏。 暑假可做些思维容量大的开发性问题, 它最终会使你的能力得 到提高,对你以后无论做什么类型的题都会有帮助。

  各位即将参加 20xx 高考的同学们,好好规划你的暑假,为你的高考复习做 足最充分的准备吧!

数学学习计划 篇4

  一、第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2、了解函数的有界性、单调性、周期性和奇偶性。

  3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  6、掌握极限的性质及四则运算法则。

  7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  二、第二阶段复习计划:

  复习高数书上册第二章1—3节,需达到以下目标:

  1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3、了解高阶导数的概念,会求简单函数的高阶导数。

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  三、第三阶段复习计划:

  复习高数书上册第二章 4—5节,第三章1—5节。需达到以下目标:

  1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

  3、掌握用洛必达法则求未定式极限的方法。

  4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  四、第四阶段复习计划

  复习高数书上册第四章 第1—3节。需达到以下目标:

  1、理解原函数的概念,理解不定积分的概念。

  2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  五、第五阶段复习计划

  复习高数书上册第五章第1—3节。达到以下目标:

  1、理解定积分的几何意义。

  2、掌握定积分的性质及定积分中值定理。

  3、掌握定积分换元积分法与定积分广义换元法。

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  六、第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。

  2、掌握定积分换元法与定积分广义换元法。 会求分段函数的定积分。

  3、掌握用定积分计算一些几何量 (如平面图形的`面积、旋转体的体积)。了解广义积分与无穷限积分。

数学学习计划 篇5

  新的学期即将到来,为了使下学期的学习成绩进步、各科成绩优异、不偏科,在此做新学期的打算,

  一、做好预习。预习是学好各科的第一个环节,所以预习应做到:

  1、粗读教材,找出这节与哪些旧知识有联系,并复习这些知识;

  2、列写出这节的内容提要;

  3、找出这节的重点与难点;

  4、找出课堂上应解决的重点问题。

  二、听课。学习每门功课,一个很重要的环节就是要听好课,听课应做到:1、要有明确的学习目的;2、听课要特别注重“理解”。

  三、做课堂笔记。做笔记对复习、作业有好处,做课堂笔记应:1、笔记要简明扼要;2、课堂上做好笔记后,还要学会课后及时整理笔记。

  四、做作业。

  1、做作业之前,必须对当天所学的知识认真复习,理解其确切涵义,明确起适用条件,弄清运用其解题的步骤;

  2、认真审题,弄清题设条件和做题要求;

  3、明确解题思路,确定解题方法步骤;

  4、认真仔细做题,不可马虎从事,做完后还要认真检查;

  5、及时总结经验教训,积累解题技巧,提高解题能力;

  6、遇到不会做的题,不要急于问老师,更不能抄袭别人的作业,要在复习功课的基础上,要通过层层分析,步步推理,多方联系,理出头绪,要下决心独立完成作业;

  7、像历史、地理、生物、政治这些需要背的科目,要先背再做。

  五、课后复习。

  1、及时复习;

  2、计划复习;

  3、课本、笔记和教辅资料一起运用;

  4、提高复习质量。

  做好以上五点是不容易的,那需要持之以恒,我决心做到。

数学学习计划 篇6

  一、早晨合理安排30分钟读一读英语。

  二、利用上午2节课的时间分别独立完成2科寒假作业。

  三、中午适当午休

  四、和上午一样,利用下午的时间做些寒假作业,但不可一下子贪多。要均衡、科学安排。

  五、自由时间可以干一些喜欢的事情,但要控制在半小时的时间。

  六、晚饭之前是自由活动的时间,可以看电视等,但要看看新闻。

  七、读一些好的小文章,写日记或是读后感,或是精彩的摘抄。

  八、每天学习的时间最少是保持在7—8小时(上课时间包括在内)

  九、学习的时间最好是固定在:上午8:30—11:30,下午14:30—17:30;晚上19:30—21:30。

  十、既不要睡懒觉,也不要开夜车。

  十一、制定学习计划,主要是以保证每科的学习时间为主。若在规定的时间内无法完成作业,应赶快根据计划更换到其他的学习科目。千万不要总出现计划总是赶不上变化的局面。

  十二、晚上学习的最后一个小时为机动,目的是把白天没有解决的问题或没有完成的任务再找补一下。

  十三、每天至少进行三科的复习,文理分开,擅长/喜欢和厌恶的科目交叉进行。不要前赶或后补作业。完成作业不是目的,根据作业查缺补漏,或翻书再复习一下薄弱环节才是根本。

  十四、若有自己解决不了的问题,千万不要死抠或置之不理,可以打电话请教一下老师或同学。

数学学习计划 篇7

  作为一名铁路二中新初一的学生来说,我对这所学校赋予了满满的热情与高昂的斗志。初中并不等同于小学,这是我人生的第一个转折点,我力求把它渲染到最完美的顶峰。

  而对于我来说,中学的生活将由此展开,初一便是至关重要。古人云:“少壮不努力,老大徒伤悲。”这“壮”指的就是我将要迎接的初一生活,而“悲”也就预示着不努力的结果。所以,为了使“悲”与我划清界限,我定将全力以赴,用最饱满的热情迎接挑战!

  但是,怎样做才能做到完美呢?在此,我要对我的数学规划作出明确判断。

  1、确定目标

  新初一开始,我要为自己顶下一个目标,继而顺着目标奋斗。

  2、知识学习。

  我认为,盲目的学习不仅没有好处,还会浪费宝贵的时间,所以,把重点放在课本上是一个非常明智的选择。“牵一发而动全身”,做到由一个知识点可以拎起一串,提起一面。系统地掌握知识后,技巧也就“水到渠成。

  3、制定计划

  作战讲究“知己知彼,百战不殆”。学习也是一样。所以要制定出符合自己实际情况的学习计划,必须要“知己”。“知己”包括三层含义:明确学习奋斗的目标,了解自己的学习情况,明确地估计自己的能力。之后便是制定学习计划。不用太复杂,不用想着每天做多少题,题海战术并不适合每一个人,而抓住重点题型,抓住历年来的频频出现在考试中的题型,将是最好的计划。

  4、学习要求

  (1)。做到上课认真听讲,认真记笔记,把老师讲的所有重点都要烂熟于心。若是课上有没听懂的,课下一定要找老师或者同学补上。“冰冻三尺非一日之寒。”若每一天的知识点都做到必会,那么离成果以又进了一步。

  (2)。跟着老师的思路走。老师的重点,往往就是所有考试最爱考的题目,若能把这些东西做到了如指掌,则可以稳中求胜。

  (3)。坚持。“坚持”是计划实施过程中最难的。由于缺乏毅力与恒心,很易虎头蛇尾。而学习是一个周期比较长的过程,今天的努力,并不能在明天就得到回报。它是量的积累引起质的飞跃。半途而废,最浪费时间与精力,并对人的自信心有很大的动摇。

  所以,我要求自己时刻不能心焦,更不能气馁、不能轻言放弃。

  我要坚持,因为我相信坚持一定能产生奇迹!

  为了能使我的初中又一个完美的结局,我定将按照以上的计划去要求自己。我相信,用我的热情、毅力、恒心,我定会稳中求胜,步步为营!

  初中,请让我用手中的画笔,为你渲染出灿烂的光辉!

数学学习计划 篇8

  学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)

  学习时间:3月份-6月份

  学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容

  学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。

  学习计划:

  一、3月24号上午9:00----11:00

  不定积分

  1.原函数、不定积分的概念;

  2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;

  3.会求有理函数和简单无理函数的积分.

  定积分

  1.定积分的概念和性质,定积分中值定理;

  2.定积分的换元积分法与分部积分法;

  3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;

  4.反常积分的概念与计算;

  5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.

  :本章的基础课后习题

  二、3月31号上午9:00----11:00

  微分方程

  1.微分方程及其阶、解、通解、初始条件和特解等概念;

  2.变量可分离的微分方程及一阶线性微分方程的解法;

  3.齐次微分方程的解法;

  4.线性微分方程解的性质及解的结构;

  5.二阶常系数齐次线性微分方程的解法;

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.

  作业:本章的基础课后习题

  三、4月7号上午9:00----11:00

  来总部阶段测评

  四、4月14号上午9:00----11:00

  多元函数微分学

  1.二元函数的概念与几何意义;

  2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;

  3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;

  4.多元复合函数一阶、二阶偏导数的求法;

  5.隐函数存在定理,计算多元隐函数的偏导数;

  6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.

  作业:本章的基础课后习题

  五、4月21号上午9:00----11:00

  重积分

  1.二重积分的概念和性质,二重积分的中值定理;

  2.会利用直角坐标、极坐标计算二重积分.

  级数

  1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;

  2.几何级数与级数的收敛与发散的条件;

  3.正项级数收敛性的比较判别法和比值判别法;

  4.交错级数和莱布尼茨判别法;

  5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;

  6.函数项级数的收敛域及和函数的概念;

  7.幂级数的收敛半径、收敛区间及收敛域的求法;

  8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;

  9.函数展开为泰勒级数的充分必要条件;

  10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

  作业:本章的基础课后习题

  六、4月28号上午9:00----11:00

  行列式

  1.行列式的概念和性质,行列式按行(列)展开定理.

  2.用行列式的性质和行列式按行(列)展开定理计算行列式.

  3.用克莱姆法则解齐次线性方程组.

  作业:本章的基础课后习题

  对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式

  七、5月5号上午9:00----11:00

  矩阵

  1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

  2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

  3.方阵的幂与方阵乘积的行列式的性质.

  4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

  5.伴随矩阵的概念,用伴随矩阵求逆矩阵.

  6.分块矩阵及其运算

  作业:本章的基础课后习题

  八、5月12号上午9:00----11:00

  总部考试

  九、5月19号上午9:00----11:00

  向量与线性方程组

  1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

  2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

  3.非齐次线性方程组解的结构及通解.

  4.用初等行变换求解线性方程组的方法.

  5.维向量、向量的线性组合与线性表示的概念

  6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

  7.向量组的极大线性无关组和向量组的秩的概念和求解.

  8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.

  作业:本章的基础课后习题

  十、5月26号上午9:00----11:00

  矩阵的特征值和特征向量

  1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.

  2.规范正交基、正交矩阵的概念以及它们的性质.

  3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

  4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.

  5.实对称矩阵的特征值和特征向量的性质.

  作业:本章的基础课后习题

  二次型

  1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

  2.正交变换化二次型为标准形,配方法化二次型为标准形.

  3.正定二次型、正定矩阵的概念和判别法.

  作业:本章的基础课后习题

  十一、6月2号上午9:00----11:00

  考试

  十二、6月9号上午9:00----11:00

  随机事件和概率

  1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.

  2.概率、条件概率的概念,概率的基本性质.

  3.会计算古典型概率和几何型概率.

  4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.

  5.事件独立性的概念与计算.

  作业:本章的基础课后习题

  随机变量及其分布

  1.随机变量的概念,分布函数的概念及性质.

  2.独立重复试验的概念与有关事件概率的计算.

  3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.

  4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.

  5.随机变量函数的分布.

  作业:本章的基础课后习题

  十三、6月16号上午9:00----11:00

  多维随机变量及分布

  1.多维随机变量的概念,多维随机变量的分布的概念和性质.

  2.二维离散型随机变量的概率分布、边缘分布和条件分布.

  3.二维连续型随机变量的概率密度、边缘密度和条件密度.

  4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.

  5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.

  6.两个随机变量简单函数的分

  作业:本章的基础课后习题

  十四、6月23号上午9:00----11:00

  考试

  十五、6月30号上午9:00----11:00

  随机变量的数字特征

  1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.

  2.会运用数字特征的基本性质,并掌握常用分布的数字特征.

  3.随机变量函数的数学期望.

  4.切比雪夫不等式.

  作业:本章的基础课后习题

  大数定律和中心极限定理

  1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

  2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)

  作业:本章的基础课后习题

  样本及抽样分布

  1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

  2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.

  3.正态总体的常用抽样分布.

  作业:本章的基础课后习题

  矩估计和最大似然估计

  1.参数的点估计、估计量与估计值的概念.

  2.矩估计法(一阶矩、二阶矩)和最大似然估计法.

  作业:本章的基础课后习题

  7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。

  7月底到8月中旬:暑假强化班

  学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。