数学教案:《方程的意义》

阿林老师

数学教案:《方程的意义》1

  教学内容

  教科书第96~98页的内容,完成练习二十四的第1~5题.

  教学目的

  使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤.

  教具准备

  简易天平、砝码、标有“20”、“30”和“?”的方木块,画有教科书第12页上图的挂图,小黑板或投影片.

  教学过程

  一、新课

  1.方程的意义.

  (1)教学第1个例子.

  教师将简易天平、砝码摆在讲台上,然后,提出问题指名让学生回答.

  教师:讲台上摆着的是什么仪器?(天平.)

  它是用来做什么的?(用来称物品的重量的.)

  怎样用它来称物品的重量呢?(在天平的左面盘内放置所称的物品,右面盘内放置砝码.当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等.砝码上所标的重量就是所称物品的重量.)

  教师一边提问,一边根据学生的回答演示如何用天平称物品.(称出的物品同教科书第11页上图.)

  教师:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等.)

  教师:对!天平两边放上重量相等的物品时,天平就平衡,反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等.那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!

  先让学生自由地说一说,根据学生的发言,教师写出算式:20+30=50

  教师:20+30=50是一个什么式子?(等式.)对!这是一个等式.

  (2)教学第2个例子.

  教师改变天平上所放的物品和砝码,使之同教科书第11页下图.

  教师:现在天平也保持着平衡,这说明了什么?(说明天平左、右两边的重量相等.)那么,怎么用式子来表示这种平衡的情况呢?再试试看!

  指名让学生试着写等式,如果学生写出20+?=100,可以提示学生:“?”是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?

  教师和学生共同把等式20+?=100改写成20+x=100.

  教师:20+x=100是一个什么式子?

  学生:这也是一个等式.

  教师:对!这也是一个等式.但是,这一个等式与20+30=50有什么不同?

  学生:这是一个含有未知数的等式.

  教师:左盘中的这个标有“?”的方木块应该是多少克,才能使天平保持平衡呢?也就是这个等式中的x是多少才能使等号左右两边正好相等呢?可以是一个随便的重量吗?

  让学生自由地说一说,教师总结.

  教师:对!这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左右两边正好相等.同学们观察一下天平,想一想x应该代表什么数呢?

  让同桌的学生讨论一下,然后指名说一说.启发学生说出,因为左盘中未知的方木块重80克才能使天平平衡,所以只有x等于80的时候,才能使等式中的等号左右两边正好相等.

  教师在20+x=100的右边板书:x=80

  (3)教学第3个例子.

  教师出示挂图(教科书第12页上图.)

  教师:我们再来看这个例子.大家先认真观察,想一想,这幅图的图意是什么.同桌的两个同学说一说.

  指名让学生说图意.

  学生:这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是186元.

  教师:每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?

  学生:每个篮球的价钱是x元,3个篮球的总价还可以表示为3x元.

  教师:谁能根据图意写出一个等式来?

  学生:3x=186

  教师:想一想,这个等式有什么特点?

  学生:这也是一个含有未知数的等式.

  教师:当x等于多少时,这个等式中的等号左右两边正好相等?

数学教案:《方程的意义》2

  教学目标:

  知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

  过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

  情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

  教学方法:合作探索,小组交流、观察、分析、概括等方法

  教学过程:

  (一)创设情境,激发兴趣。

  师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

  (二)观察现象,抽象概括

  1.平衡现象数量关系的抽象概括。

  师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?

  师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)

  师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?

  2.不平衡到平衡现象数量关系的抽象概括

  师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?

  师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻

  这边加150克砝码,观察天平平衡了吗?

  师:左边盘中物体质量的可以怎样表示?(生:X+150)

  师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)

  师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?

  师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)

  3.不确定现象数量关系的抽象概括

  师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?

  师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)

  师:这瓶矿泉水被喝掉了多少克?(生:不知道)

  师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)

  师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]

  师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)

  (三)观察分类,抽象概念

  1.观察分类。

  师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的.方式进行分类。(自主学习)

  2.展示分类。

  ①交流分类情况,说明分类理由。

  ②揭示“等式”与“不等式”的概念

  师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)

  3.抽象概念

  师:请同学们仔细观察这些等式,它们有什么不同?

  师:这些等式中的字母表示“未知数”,像这些“X+100=

  含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)

  师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)

  (四)应用新知,加深理解

  1.判断下列式子是不是方程。

  2.创作方程。

  3.问题质疑,揭示方程与等式的关系。

  ①含有未知数的式子是方程?

  ②“方程一定是等式,等也一定是方程?

  (五),巩固练习。

  师:说说你这节课有什么收获,你还想学习有关方程的什么内容。

  师:我们一起来应用今天所学的知识吧!

数学教案:《方程的意义》3

  【教学目标】

  1.知识目标:使学生初步理解“等式”“不等式”和“方程”的意义,并能进行辨析,学会用方程表示数量关系。

  2.能力目标:培养学生观察、比较、分析概括的能力。

  3.情感态度与价值观目标:培养学生对学习的学习兴趣。

  【教学重点】

  会用方程的意义去判断一个式子是否是方程。

  【教学难点】

  用方程表示数量关系。

  【教学过程】

  一、导入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  二、新知学习

  1.实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300。

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  2.写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

  看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

  3.反馈练习。

  完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

  课堂练习

  这节课学习了什么?怎么判断一个式子是不是方程?

  提问:方程是不是等式?等式一定是方程吗?

  看“课外阅读”,了解有关方程产生的数学史。

  要学习好数学,需掌握好方程,教师可多通过实物演示让学生更加直观的掌握课程内容。也可让学生观察生活,建立课堂内容与生活的联系。

数学教案:《方程的意义》4

  教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

  教学要求:

  1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

  2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

  教 具:

  教学天平、小黑板。

  学 具:

  自制的简易天平、定量方块。

  教学步骤:

  一、复习

  1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)被除数=( )○( )

  (6)除数=( )○( )

  2.求未知数X(并说说求下面各题X的依据)。

  (1)20十X=100 (2)3X=69

  (3)17X=0.6 (4)x5=1.5

  二、新授

  1.理解和掌握方程的意义。

  (1)出示天平,介绍使用方法(演示)后,设问:

  在天平两边放物体,在什么情况下才能使天平保持平衡?

  (两边的物体同样重时,天平才能保持平衡。)

  (2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

  板书:20十30=50

  指出:表示左右两边相等的式子叫等式。

  (并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

  (3)教学例2(课本105页)。

  ①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

  板书:20+?=100

  ②等式20+?=100中的?是未知数,通常我们用X来表示,那么上面的等式可写成 (板书)20十X=100

  ③比较:等式20+X=100与等式20+30=50有什么不同?(含有未知数)教师指出,20+X=100是含有未知数的等式。

  ④想一想:X等于多少,才能使等式20+X=100左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

  (4)教学例3(课本106页)。

  出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

  ①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)

  ②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

  (板书)3X=234

  ③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

  (5)方程的意义:

  综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

  20+30=50一般的等式

  20+X=200 含有未知数的等式

  3X=234 称之为方程

  (板书)像20+x=100 3X=234 X10=35 X12=5等,含有未知数的等式叫做方程。

  ①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

  ②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。)

  (6)练一练(指名学生判断,并说明理由)教材第106页做一做。

  2.学习解简易方程。

  (i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

  (板书)使方程左右两边相等的未知数的值,叫做方程的解。

  例如:X=80是方程20+X=100的解;

  X=78是方程3X=234的解。

  (板书)求方程的解的过程叫做解方程。

  ②方程的解和解方程有什么联系和区别?

  方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

  (2)教学例1:

  解方程X一8=16

  ①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

  ②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

  (板书)解方程X一8=16

  解::根据被减数等于减数加差;

  X=16十8(与原来学过的求X的思路相同)

  X=24

  检验:把X=24代人原方程

  左边=24一8=16,右边=16

  左边=右边

  所以X=24是原方程的解。

  总结有关的格式要求:

  ①做题时要先写上解字。

  ②各行的等号要对齐,并且不能连等。

  ③方框里的运算根据可以不写。

  ④验算以检验的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

  指导学生看教材第105一107页。

  三、巩固

  1.教材107页做一做。

  2,教材第108页练习二十六第1、2题。

  四、练习

  教材第108页,练习二十六第3~5题。

  作业辅导