教学内容:
教材第42页例2、例3。
教学目标:
1、知道什么叫做解比例。
2、会根据比例的性质或比例的意义正确地解比例。
3、培养学生认真书写和计算的习惯。
过程与方法:
1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。
2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
教学重点:
解比例
教学难点:
解比例的方法。
突破方法:
引导学生小组合作探究、交流,掌握解比例的根据。
教法与学法:
教法:创设问题情境,引导发现。
学法:独立思考,自主探究。
教学准备:
ppt课件。
教学过程:
一、复习准备
1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)
2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。 6:10和9:15 2:80和5:200
3、利用比例的一些知识,还可以帮助我们解决一些实际问题。
出示比例:3:9=( ):15
师:这个比例中的两个外项和两个内项分别是多少?
(外项是3和15,一个内项是9,另一个内项未知的。)
师:你能利用比例的知识求出这个未知的内项吗?
可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想( ):15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。
师:像这样,求比例中未知的项,叫做解比例。(课件出示)。
今天这节课就利用比例的有关知识解比例。(板书课题)
二、探索新知
1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道、你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题,教学例2。学生读题。
师:1:10是谁与谁的比?
教师随学生的回答板书: 埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:
10。
师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。) 师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)
师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)
师:这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?
板书:解:设这座埃菲尔铁塔模型的高度是x米。
X:320=1:10
师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?
为什么可以写成这样的等式呢? 引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。
师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)
师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)
师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。
那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们
知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)
出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例、)或比例的基本性质来检验。
解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)
3、巩固例2练习
(1)出示练习题p44第8题
(2)学生独立完成,二名学生板演讲解分析
(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)
4、这个比例你能解答吗?出示例3: 1、5/2、5=6/X
(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)
(2) 解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项
(3)学生独立练习,求出未知项
(4)同学间互相交流,发现问题及时解决
5、指导学生梳理教材的知识点,完成p42“做一做”。
三、巩固练习
课件出示基本练习和提高练习,学生独立完成,指名板演。
四、本课小结
这节课主要学习了什么内容?
五、布置作业
p44第8题、第9题、第10题
板书设计
解比例
例2 模型高度:原塔高度= 1 : 10
未知项(x) 320米
解:设这座模型高x米。
X:320=1:10
10X=320 x 1
X=320÷10
X=32
答:这座模型高32米。
教学反思:
解比例一课是在学习了比例的基本性质后学习的,教学解比例之前,教师先复习根据比例的意义和除法中各部分的关系可以求出比例里的未知项:然后告诉学生,还可以根据比例的基本性质来求比例里的未知项。所以,在实际授课的过程中,由于学生提前对这一部分进行了预习,对比例的意义和比例的基本性质也掌握的很扎实,所以对授课内容比较了解,教学组织和实施都比较顺利。遗憾的是,虽然扶放结合的课堂效果很好,利于大部分学生掌握知识,但是如果对例2 的教学大胆放手,让学生直接板演并讲述思路,然后教师从旁点
教学内容:
解比例
教学目标:
1、使学生掌握解比例的方法,能正确解比例。
2、体现数学服务于生活的思想。
教学重点:
掌握解比例的方法
教具:
实物投影
教学过程:
一、复习
1、口答,说出下列方程的解答过程:
2X=8x91/2=1/5x1/4。
2什么是比例?比例的基本性质是什么?
3把下面比例改写成两个数相乘的形式
3:8=15:40,9/1、6=4、5/0、8
二、新课
1、出示图片,介绍这是法国著名上午埃菲尔铁塔,塔高320米,在北京世界公园里有一座塔的模型,高度32米,问模型与原来塔高度的比是多少?并化简成最简整数比。
2、出事例题,读题并观察,两道题有什么相同点和不同点
3、讨论,研究解题办法
4、汇报分析不同的解法(此时揭示课题并说明什么是解比例)
5、注意强调列式是两个比前后的一致性
6、出示例31、5/2、5=6/X比较与例2的不同,明确解题思路
7、小结:说明解比例的方法,解比例也就是解方程
三练习
1、求X的值1/2X=1/4x1/57、8:X=8、2:10
2、书上练习第8题
3、团结路图上距离与实际距离的`比是1:30000,它的图上距离是六厘米,它的实际距离是多少米?
4、小兰说她只用一把尺子,一根竹竿就能量出操场上旗杆的高度,你信吗?为什么?下课后尝试去测量。
总结:这节课你收获了什么?怎样解比例?
教学目标
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点
用比例解决生产生活中的问题。
教学过程
【问题导学】
畅所欲言:关于比例,你已经知道了什么?赶紧把你的收获和同桌交流一下吧!
1、交流汇报。
2、运用收获的知识解决问题:将2:80 80:2 5:200 200:5放在天平的两端,使它保持平衡,并说出理由。
3、将比例式子运用比例的基本性质改写成等积式。
0、5:5=0、2:2 0、5×2 =( )×( )
2/5:1/2=3/5:3/4 2/5×3/4=( )×( )
8:25=40:x ( )×( )=( )×( )
观察上面的三个式子,有什么不同?
引导学生解第三个方程,追问方程是怎样来的?
揭题,导入新知。
【自主探究】
1、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)
那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)
依据是什么呢?
同学们真聪明,不用老师讲,用以前学过的知识就解决了今天的难题,继续开动你聪明的大脑前行吧!
2、试做:1、25:0、25=x:1、6 1、5/2、5=x/6
与大屏幕比较,提出质疑。
怎样知道解是否正确呢?检验。
小结解比例的方法。
3、即时练习:32页做一做。
4、比例在生活中的应用示范广泛,你看,老师给大家带来了谁?
侦探柯南之神秘脚印: 一个月黑风高的夜晚,一家珠宝店失窃了。第二天早上,小侦探柯南经过仔细勘察,在案发现场发现了一枚犯罪嫌疑人留下的脚印,根据这枚脚印,柯南很快判断出了犯罪嫌疑人的身高,你们知道,他是怎样判断的吗?科学研究表明:人体身高与脚长的比大约是7 :1,柯南在案发现场测得犯罪嫌疑人的脚印长 25 厘米,请你帮忙算一算:这个犯罪嫌疑人的身高约是多少?
学生解决,如果用比例知识来解,怎样解呢?
教师点拨:用比例解的关键是找到关系式。身高:脚长=7:1,将脚长的条件换到这个关系中,就可以列出比例。
规范写法。
【巩固提升】
1、出示书35页例2、自己解决,小组交换检查。
2、育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?
【课堂小结】:这节课主要学习了什么内容?
【教学内容】
义务教育课程标准实验教科书《数学》(人教版六年级 下册)教材P59―60内容。
【教学目标】
1、理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。
2、通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。
3、 发展学生的应用意识和实践能力。
【教学重点】运用正反比例解决实际问题。
【教学难点】正确判断两种量成什么比例。
【教材分析】
解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用、教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数 列比例解答、判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视、同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力、
【学情分析】
解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。
【设计理念】
利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点、正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣、首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答、这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。
通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题、
【教学过程】
一、铺垫孕伏(课件演示:比例的应用)
判断下面每题中的两种量成什么比例关系?
1、速度一定,路程和时间、
2、路程一定,速度和时间、
3、单价一定,总价和数量、
4、每小时耕地的公顷数一定,耕地的总公顷数和时间、
5、全校学生做操,每行站的人数和站的行数、
【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。】
二、探究新知
(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题、这节课我们就来学习比例的应用、(板书:解比例应用题)
(二)教学例5(课件演示:教材对话主题图)
例5、张大妈上个月用了8吨水,水费是12、8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?
学生利用以前的方法独立解答:
先算出每吨水的价钱,再算10吨水的多少钱?
12、8÷8×10
=1、6×10
=16(元)
【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。】
2、利用比例的知识解答、
思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)
哪种量是一定的?你是怎样知道的?(水的单价一定、)
用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系、)
教师板书:单价一定,水的数量和总价成正比例
教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单价相等)
怎么列出等式?
解:设李奶奶家上个月水费x元、
8x=12、8×10
x=16
答:李奶奶家上个月水费16元、
3、怎样检验这道题做得是否正确?(学生自主完成)
4、变式练习:张大妈上个月用了8吨水,水费是12、8元,王大爷上个月水费是19、2元,他们家上个月用了多少吨水?
【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。】
(三)教学例6(课件演示例6主题图)
例6: 一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?
1、学生利用以前的算术方法独立解答、
20×18÷30
=360÷30
=12(包)
2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的——————是一定的,__________和__________成__________比例、所以两次捆书的__________和__________的__________是相等的、
3、如果设要捆x包,根据反比例的意义,谁能列出方程?
30x=20×18
x=360÷30
x=12
答:每捆12包、
4、变式练习
一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?
【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】
三、全课小结
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程、
四、随堂练习
1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答、
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?
(2)王师傅4小时生产了200个零件,照这样计算,__________?
2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
3、同学们做广播操,每行站20人,正好站18行、如果每行站24人,可以站多少行?
【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】
五、布置作业
1、一台拖拉机2小时耕地1、25公顷,照这样计算,8小时可以耕地多少公顷?
2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本、如果每本16张,可以装订多少本?
3、P60---做一做
【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。】
【板书设计】
解比例应用题
例5: 例6:
单价一定,总价和数量成正比例。 总数量一定,每包本书和包数成反比例。
解:设李奶奶家上个月水费x元、 解:设要捆x包
30x=20×18
8 x=12、8×10 x=360÷30
x=16 x=12
答:(略) 答:(略)
【教学后记】:
正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。
教学目标:
1、了解比在生活中的广泛应用。
2、掌握按比分配的解题思路。
3、学会灵活地解决生活中的实际问题。
教学方法:
分析、推理、合作交流,让学生自主探索知识。
教学重点:
学会用比的应用知识解决生活中的实际问题。
教学难点:
学会自主探索解决问题的方法。
教学流程:
一、导入新课
学生展示收集的物品,体会比在生活中应用很广泛。
师:看来,比在生活中应用很广泛,这节课我们来学习《比的应用》。
二、探索新知
1、读题,理解题意。
出示课件,观察老师收集的物品,齐读什么叫稀释液,谈谈自己的理解。
出示例题,齐读,你知道了哪些数学信息?
2、做实验。
师:500ml的稀释液是如何按1:4的比配制成的呢?我们通过下面的实验来了解一下。把水和浓缩液配制在一起,仔细观察看有什么变化?
师:1份的浓缩液和4份的水制成的液体叫什么?你知道500ml的稀释液是几份吗?你是怎么想的?如果按1:3配制呢?按1:5配制呢?
3、画线段图。
师生一起在线段图上表示浓缩液、水和稀释液之间的关系。让生上台指出各部分表示什么。
师:1份的浓缩液和4份的水合起来是几份?板书:1+4=5?把稀释液看出单位“1”,平均分成5份,浓缩液还能怎样表示?水呢?板书:
4、解决问题。
生独立完成,找生板演,同桌交流,最后集体汇报(注意对应关系)。
5、归纳方法。
方法一,先求每份是多少,再求几份是多少。
方法二,把1:4转化成分数,根据求一个数的几分之几是多少用乘法计算来解决。
6、检验。
师:这道题我们做的对不对呢?如何检验?
三、巩固练习。
1、我们按1:10的比把白米醋加水配制成一瓶550ml的稀释液,加热沸腾后给教室消毒,其中需要醋和水各多少毫升?
2、适用范围、稀释比例(原液:水)、作用时间(分钟)、使用方法
一般物体表面
1:200
10—30
对各类清洁物体表面擦拭、浸泡、冲洗消毒。
1:100
10—30
对各类非清洁物体表面擦拭、浸泡、冲洗、喷洒消毒。
果蔬
1:250
10
将果蔬洗净后再消毒;消毒后用生活饮用水将残留消毒液洗净。
织物
1:125
20
消毒时将织物全部浸没在消毒液中,消毒后用生活饮用水将残留消毒液洗净。
排泄物
1:4
>120
按照1份消毒液、2份排泄物混合搅拌后静置120分钟以上。
周末小明清洗苹果,需要配置502ml的稀释液,需要消毒液和水各多少毫升?
四、全课总结
谈收获,图片欣赏。
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
守财奴教学设计
范进中举教学设计模板
狐狸和乌鸦教学设计方案
在大熊猫的故乡优秀教学设计
守财奴教学设计
范进中举教学设计模板
狐狸和乌鸦教学设计方案
一年级池上优秀的教学设计范文(通用五篇)
杨氏之子的教学设计模板
观察物体教学设计(苏教版国标第五册数学两篇)
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
景阳冈教学设计模板
教学设计中的教学目标方案
有余数的除法教学设计
四年级语文下册练习6教学设计
春潮教学设计
在大熊猫的故乡优秀教学设计
课文燕子专列教学设计(精选三篇)
二年级彩色的梦教学设计
课文藤野先生教学设计模板
画的教学设计
夏洛的网教学设计
陆游诉衷情教学设计范文(精选三篇)
假日杏教案教学设计
父母与孩子之间的爱优秀教学设计
鲸教学设计板书