梯形面积计算教学设计范文(精选三篇)

莉落老师

  梯形面积计算教学设计1

  教学内容:

  小学数学第七册74—75页的内容

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重点、难点:

  理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

  教具准备:

  课件。

  教学过程:

  (一)复习旧知,做好铺垫。

  1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

  2、练习(出示)

  口答下面各图形的面积。(单位:厘米)

  (二)创设情景,提出问题

  师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

  师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

  师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

  (三)小组学习,解决问题。

  师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

  合作要求:

  (1)想一想:我们已经学过哪几种图形的面积公式?

  (2)试一试:把梯形转化成已经学过的图形。(任选一种)

  (3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

  (4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

  全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

  教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

  师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

  师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

  课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

  让学生独立计算,在集体订正。

  师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

  (四)应用拓展,巩固知识。

  师:下面我们来做练习吧。

  1、一☆练习

  a、课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

  b、课件出示:P75做一做,由学生独立完成,集体订正。

  c、课件出示:判断

  1)两个梯形能拼成一个平行四边形。()

  2)平行四边形的面积是梯形面积的2倍。()

  让学生独立判断,并说明理由。

  2、二☆练习

  a、课件出示:

  一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

  b、课件出示:

  我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

  (顶层根数+底层根数)×层数÷2

  想一想是什么道理,并算出图中圆木的总根数。

  3、三☆练习

  课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

  学生独立解答,再交流。

  (五)小结全课,结束教学

  让学生讲讲这节课的收获,并布置作业。

  有时间的话做“思考”

  在下图的梯形中,剪下一个最大的.三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

  梯形面积计算教学设计2

  教学目标:

  1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。

  2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。

  3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。

  教学重点:

  发现、理解和应用梯形面积计算公式。

  教学难点:

  理解公式的推导过程

  教具准备:

  计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。

  学具准备

  每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。

  教学过程:

  一、迁移诱导,激发参与兴趣

  1、启发学生回忆三角形的面积推导公式。

  2、板书课题,引入新课。

  二、实验操作,引导参与探究

  1、转化

  学生分成四人小组进行学习。

  独立拿出准备好的各种梯形,拼成学过的图形。

  学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。

  2、观察

  学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。

  板书如下:梯形面积,拼成的平行四边形面积的一半

  平行四边形的底,梯形是上底+下底

  平行四边形的高,梯形的高

  3、推导

  学生分组讨论,教师巡视,注意点拨。

  学生反馈,教师注意用规范的语言进行调控。

  板书如下:

  平行四边形面积=底×高

  梯形的面积=(上底+下底)×高÷2

  S=(a+b)×h÷2

  提问:计算梯形的面积为什么除以2?

  三、反馈调节,巩固参与成果

  1、引导实际应用,巩固梯形面积公式

  2、分层训练,培养能力

  3、发展提高,深化知识

  梯形面积计算教学设计3

  教学内容:

  教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教具准备:

  1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

  2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

  3、学生将教科书第147页上面的两个梯形剪下来。

  教学过程:

  一、复习。

  出示三角形图。

  问:三角形的面积怎样求?

  这个三角形的面积是多少?

  三角形的面积计算公式我们是怎样推导出来的?

  怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

  师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

  二、新课。

  1、教学梯形面积的计算公式。

  出示教科书第80页上面的梯形图。

  问:这个图形是什么形?(梯形)

  师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

  问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

  教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

  问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

  两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

  平行四边形的底等于什么?(等于梯形的上底、下底之和)

  平行四边形的高和梯形的高有什么关系?(相等)

  平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

  一个梯形的面积怎样算?(提示学生回答,

  教师板书:(3+5)×4÷2

  =8×4÷2

  =32÷2

  =16(平方厘米)

  师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

  问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

  平行四边形的高是什么?(就是梯形的高)

  板书:

  平行四边形的面积=(上底+下底)×高

  梯形的面积=(上底+下底)×高÷2

  如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

  S=(a+b)×h÷2

  问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

  2、应用出的梯形面积公式计算梯形面积。

  (1)出示第81页例题。

  指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

  问:这个梯形的上底是多少?下底呢?

  这个梯形的高是多少?

  梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

  (2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

  三、巩固练习。

  练习十九第1、2题。

  四、作业。

  练习十九第3、4题。