第五课时“商的变化规律”教学设计

刘莉莉老师

  教学目标:

  1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。

  2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。

  3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。

  教学重点:

发现规律,掌握规律。

  教学难点:

利用商的变化规律进行简便计算。

  教学准备:

课件,实物投影

  教学过程:

  一、情境激趣,揭示新课。

  1、师:同学们,你们喜欢孙悟空吗?你们知道孙悟空有一项特别厉害的本领是什么呢?(生:七十二变)不管孙悟空怎么变,它还是谁?(生:孙悟空)

  2、师揭示新课:

  数学知识也有这些变与不变的现象,今天我们就一起来探讨这些变化规律。

  二、探究体验,建构新知。

  (一)探究商随除数(或被除数)变化而变化的`规律。

  1、课件出示情境-:星期天,谭老师到体育用品商店去买球,乒乓球每个2元,足球每个20元,篮球每个40元,用200元买其中一种球,可以分别买多少个?

  情境二:在学校举行的冬季趣味运动会“定点投篮”项目中,每8人一组,16人可以分成多少组?160人呢?320人呢?

  (实物投影)展示:A200÷2=100B16÷8=2

  200÷20=10160÷8=20

  200÷40=5320÷8=40

  2、组织小组讨论:在刚才两组算式中,藏着很有价值的数学知识,仔细观察,你发现了什么?每一小组可选择自己感兴趣的一组算式进行研究。

  小组讨论:

  (1)仔细观察被除数、除数、商,你发现了什么?

  (2)从上到下任选两个式子比较,什么相同,什么不相同,什么发生了变化?

  (3)从下往上看,任选式子比较,什么相同,什么不相同?什么发生了变化?怎样变化?

  3、汇报交流,总结归纳商随被除数(或除数)娈化的规律。

  研究A组题的学生汇报:

  研究B组算式的学生汇报:

  4、师:通过刚才大家的发现与交流,我们看到在被除数不变时,商随着除数的变化而变化;在除数不变时,商又随着被除数的变化而变化,假如要使商不变,同学们猜一猜被除数、除数该怎样变化?

  (二)探究商不变的规律。

  1、情境三:故事“猴王分桃”引入探究商不变的规律。

  花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你4个桃子,平均分给2只小猴吧。”小猴听了,连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你40个桃子,平均分给20只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你400个桃子,平均分给200只小猴,你总该满意了吧?”这时,小猴子笑了,猴王也笑了。

  师:谁的笑是聪明的一笑?为什么?

  2、学生交流,口述算式:

  4÷2=240÷20=2400÷200=2

  3、师:认真观察这一组算式,当商不变时,你发现被除数是怎么变化的,除数又是怎么变化的?验证一下你刚才的猜想。

  4、引导学生交流,学生之间互相补充。

  (1)生结合算式说出商不变的规律

  (2)用准确的语言表述这一规律

  (三)对比观察小结商的三个变化规律

  1、引导观察三组算式,商有在什么情况下变,在什么情况下不变呢?

  2、生边汇报,师边将表补充完整。

  出示表:

  被除数除数商

  不变变变

  变不变变

  变变不变

  师:他们的变与不变是有规律的。正如我们刚才总结的那样。在今后运用规律解决一些实际问题时一定要注意。同时乘(或除以)相同的数,在商不变时还应注意“0”除外。

  三、应用练习,拓展提升。

  1、口算(根据每组第1题的商,口算出下面各题的商)

  100÷515÷372÷9

  100÷1060÷3720÷90

  100÷50120÷37200÷900

  2、填空。

  120÷30=(120×3)÷(30×□)

  60÷12=(60÷2)÷(12○2)

  200÷40=(200×□)÷(40○5)

  150÷50=(150○□)÷(50○□)

  3、看谁算得又对又快?

  6300÷700=□8100÷300=□200÷25=□

  四、课堂小结

  1、这节课你有什么收获?

  2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?