平行四边形的面积优秀教学设计(精选五篇)

孙小飞老师

  平行四边形的面积优秀教学设计1

  教学内容:

  人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86-88

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  2块平行四边形彩色纸片、三角板、直尺、剪刀

  教学过程:

  师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

  一、情境创设,揭示课题

  1、创设故事情境

  同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

  2、复习旧知,揭示课题

  (1)、复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

  (2)、师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

  (板书课题:平行四边形的面积)

  二、自主探究,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  (两个图形的面积相等,都是18平方米……)(知识点)

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

  (师出示一个平行四边形纸板,生看图猜测。)

  生汇报猜测结果,师随机板书。

  师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

  2、操作验证

  提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。

  (师参与到小组活动中,巡视指导。)

  3、汇报交流

  师:你是怎样做的呢?谁愿意上来演示并说一说呢?

  (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

  师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

  (电脑显示思考题)

  小组讨论交流。

  (1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  实物图片展示拼剪过程同时回答上面的讨论题。

  学生一边说教师一边板书:长方形面积=长×宽

  平行四边形面积=底×高(知识点)(能力点)

  5、回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说平行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

  7、记忆公式

  闭上眼睛记记公式。

  如果要求平行四边形的面积,必需要知道哪些条件呢?

  8、尝试运用

  师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

  (出示喜羊羊的草地图)(说明格式要求)学生独立完成。

  三、深化运用,加深理解

  通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

  1、算出下列平行四边形的面积(考查点)

  课件出示图形

  (羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

  2、选一选。(题目见课件)(考查点、能力点)

  (强调:平行四边形的面积=底×底边对应的高)

  你有什么结论?(等底等高的两个平行四边形面积相等。)

  3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

  (考查点、能力点)

  有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

  四、解决问题,应用拓展

  1、小小设计师:

  羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

  2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

  五、总结全课,提高认识

  这节课我们学习了什么知识?是怎么来学会这些知识的?

  平行四边形的面积优秀教学设计2

  一、教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  二、教学重点、难点及关键点剖析:

  1、重点:平行四边形面积公式的推导及应用。

  2、难点:理解平行四边形面积计算公式的推导过程。

  三、教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、

  四、教学过程:

  一、创设情境,导入新课

  猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

  生:算出这两块地的面积,比比就知道了。

  师:那长方形的面积怎么算呢?

  生:长方形的面积=长×宽

  师:平行四边形的面积怎么算呢?

  生摇摇头。

  师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)

  齐读学习目标:

  1、通过操作,能推导出平行四边形的面积计算公式。

  2、会运用平行四边形的面积计算公式解决实际问题。

  二、自主学习

  在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)

  小组讨论:

  (1)仔细观察、比较表格中的数据,你发现了

  (2)猜想:平行四边形的面积=_________________________

  三、动手操作,验证猜想

  (1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)

  (2)以小组为单位进行剪拼。

  (3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

  (4)讨论:

  A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)

  B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。

  (6)交流汇报

  板书:长方形的面积=长×宽

  ↓↓↓

  平行四边形的面积=底×高

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)

  四、当堂检测

  1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

  出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生独立完成,并展示学生作业。

  2、计算下面平行四边形面积,列式正确的是:()

  A:8×3B:8×6C:4×6D:4×3

  通过做此题,你想提醒大家注意什么?

  3、你能想办法求出下面这个平行四边形的面积吗?

  五、拓展提升

  下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  1.4cm

  2.5cm

  通过做此题,你发现了什么?

  六、课堂小结

  说说本节课,你收获了什么?

  七、板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  ↓↓↓

  平行四边形的面积=底×高

  S=a×h

  =ah

  =ah

  平行四边形的面积优秀教学设计3

  [教学目标]

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点、难点]

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  [教具、学具准备]

  多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

  [教学过程]

  一、复习旧知,导入新课。

  1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

  2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

  师板书:长方形的面积=长×宽

  师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

  二、动手实践,探究发现。

  1、剪拼图形,渗透转化。

  (1)小组研究

  老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

  (2)汇报结果

  第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

  板节课题:平行四边形面积计算

  2、动手实践,探究发现。

  (1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

  (2)学生重新剪拼,互相探讨。

  (3)汇报讨论结果。

  师板书:平行四边形的面积=底×高

  (4)让学生齐读:平行四边形的面积等于底乘以高。

  (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

  (必须知道平行四边形的底和高)

  课件展示讨论题:平行四边形的底和高是否相对应。

  (6)总结平行四边形面积的字母代表公式:S=ah(师板书S=ah)

  (7)比较研究方法。

  三、分层训练,理解内化。

  课件显示练习题

  第一层:基本练习

  第二层:综合练习

  第三层:扩展练习

  下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  四、课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  平行四边形的面积优秀教学设计4

  教学内容:

  苏教版第八册第42页“平行四边形面积的计算”

  教学目标:

  1、发现平行四边形面积的计算方法。

  2、能类推出平行四边形面积的计算公式。

  3、能准确进行平行四边形面积的计算。

  4、培养学生的动手操作、观察、分析、类推能力。

  5、渗透转化思想,培养学生的空间观念。

  教学重点:

  掌握平行四边形面积的计算公式,准确计算平行四边形面积。

  教学难点:

  平行四边形面积公式的推导过程。

  教学具准备:自剪平行四边形,作业纸,课件。

  教学过程:

  一、复习铺垫:

  1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)

  2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢?

  3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)

  二、引导探索、揭示新知:

  1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的底是多少?高是多少?(指名回答)

  有谁知道它的面积是多少?你怎么知道的?

  那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢?

  这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)

  2、实验操作

  (1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)

  (2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!

  (3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)

  (4)为什么要沿高剪开呢?(因为长方形的四个角都是直角)

  3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。

  第一步画:从平行四边形一个钝角的顶点向对边作高。

  第二步剪:沿高把平行边形剪成两部分。

  第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。

  4、公式推导

  (1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?

  根据回答板书:

  长方形的面积长宽

  平行四边形的面积底高

  (2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书

  同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。

  请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。

  师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。

  5、教学字母公式

  如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:

  s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍

  三、应用公式、尝试例题

  1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?

  问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做

  (1)指名板演(其余学生做在课堂练习本上)

  (2)集体评讲

  2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?

  四、巩固练习

  同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名)

  五、全课总结

  通过这堂课的学习你有什么收获?

  师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。

  六、学到这儿,你有没有这方面知识的思考题来让大家动动脑?

  机动思考题:

  1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?

  2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?

  平行四边形的面积优秀教学设计5

  教学内容:

  人教版小学《数学》五年级上册,平行四边形的面积。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

  2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

  3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重点:探索并掌握平行四边形的面积计算公式。

  教学难点:理解平行四边形的面积计算公式的推导过程。

  教学过程:

  一、巧设情境,铺垫导入

  师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?

  (根据学生的回答,教师适时板书:长方形的面积=长×宽)

  师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)

  师:这样一拉,形状变了,面积变了吗?

  师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?

  (平行四边形的`面积等于相邻两条边的乘积)

  师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。

  请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确。拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积。

  师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)

  二、合作探索,迁移创造

  1、图形转换

  师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)

  师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)

  2、探讨联系

  师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)

  师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  3、推导公式

  师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)

  (教师根据学生回答板书:平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  (教师根据学生回答板书:S=ah)

  4、验证公式

  师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)

  师:计算出来的结果和我们数方格得出的结果一样吗?(一样)

  师:这证明我们所推导出来的平行四边形面积公式是正确的。

  5、提问质疑

  师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)

  三、层层递进,拓展深化

  1、算一算

  师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  2、选一选

  师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  3、画一画

  师:请同学们在方格纸上画出一个面积是24cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)

  4、想一想

  师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)

  师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等。)

  四、总结全课,提高认识

  回顾刚才我们的学习过程,你有什么收获?

  教学反思:

  本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。

  1、前后呼应,浑然一体

  利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。

  把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。

  2、合作探索,迁移创造

  在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。