等比数列公式性质知识点
1.等比数列的有关概念
(1)定义:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).
(2)等比中项:
如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
3.等比数列{an}的常用性质
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.
特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.
4.等比数列的特征
(1)从等比数列的定义看,等比数列的任意项都是非零的',公比q也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
等比数列知识点
1.等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
2.等比数列通项公式
an=a1_q’(n-1)(其中首项是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
当q=1时,等比数列的前n项和的公式为
Sn=na1
3.等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比数列性质
(1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)
(6)任意两项am,an的关系为an=am·q’(n-m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
等比数列知识点总结
等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
1:等比数列通项公式:an=a1_q^(n-1); 推广式: an=am·q^(n-m);
2: 等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an
①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②当q=1时, Sn=n×a1(q=1) 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
4:性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;
②在等比数列中,依次每 k项之和仍成等比数列.
例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak_al=am_an
证明:设等比数列的首项为a1,公比为q,则 ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)
所以: ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2), 故:ak_al=am_an
说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即: a(1+k)·a(n-k)=a1·an
对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即: a(1+k)+a(n-k)=a1+an
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
人教版九年级历史下册第二课教案范文
政治功课教学反思工作总结7篇
初一第一学期生物教学设计
高中数学必修一知识点总结必备
高中数学必修一知识点总结必备
高中理科数学知识点必看
高中数学必修五知识点必备总结
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
高中数学必修四知识点总结必备
高中数学必修三知识点必看归纳
高一必修一数学知识点总结大全
高一上学期数学基本知识点必备
高考数学知识点全归纳整理
最新六年级数学上册知识点总结整理
初三数学知识点大全总结归纳
高中数学教学计划范文五篇
高中数学的教学计划范文五篇
初一数学教学计划方案五篇