八年级上册数学期末考前复习资料

孙小飞老师

八年级上册期末数学复习资料

第一章勾股定理

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。

第二章实数

1.平方根和算术平方根的概念及其性质:

(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。

2.立方根的概念及其性质:

(1)概念:若,那么是的立方根,记作:;

(2)性质:①;②;③=

3.实数的概念及其分类:

(1)概念:实数是有理数和无理数的统称;

(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。

第三章图形的平移与旋转

1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

第四章四边形性质的探索

1.多边形的分类:

2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1_L2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

3.多边形的内角和公式:(n-2)_180°;多边形的外角和都等于。

4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

第五章位置的确定

1.直角坐标系及坐标的相关知识。

2.点的坐标间的关系:如果点A、B横坐标相同,则∥轴;如果点A、B纵坐标相同,则∥轴。

3.将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。

第六章一次函数

1.一次函数定义:若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。当时称是的正比例函数。正比例函数是特殊的一次函数。

2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。

3.正比例函数图象性质:经过;>0时,经过一、三象限;<0时,经过二、四象限。

4.一次函数图象性质:

(1)当>0时,随的增大而增大,图象呈上升趋势;当<0时,随的增大而减小,图象呈下降趋势。

(2)直线与轴的交点为,与轴的交点为。

(3)在一次函数中:>0,>0时函数图象经过一、二、三象限;>0,<0时函数图象经过一、三、四象限;<0,>0时函数图象经过一、二、四象限;<0,<0时函数图象经过二、三、四象限。

(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。

4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。

5.运用一次函数的图象解决实际问题。

第七章二元一次方程组

1.二元一次方程及二元一次方程组的定义。

2.解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法;③图象法。

3.方程组解应用题的关键是找等量关系。

4.解应用题时,按设、列、解、答四步进行。

5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。

第八章数据的代表

1.算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。

2.中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。众数指的是一组数据中出现次数最多的那个数据。

八年级上册数学考前复习资料

22.1多边形

1.由平面内不在同一直线上的一些线段收尾顺次联结所组成的封闭图形骄傲做多边形

2.组成多边形每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点

3.多边形相邻两边所成的角叫做多边形的内角

4.对于一个多边形,画出它的任意一边所在的直线,如果其余个边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形

5.多边形的内角和定理:n边形的内角和等于(n-2)×180°

6.多边形的一个内角的邻补角叫做多边形的外角

7.对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有的外角的和叫做多边形的外角和

8.多边形的外角和等于360°

22.2平行四边形

1.两组对边分别平行的四边形叫做平行四边形;用符号

2.(1)性质定理1:如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等简述为:平行四边形的对边相等

(2)性质定理2:如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等

简述为:平行四边形的对角相等

(3)夹在平行线间的平行线段相等

(4)性质定理3:如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分

(5)性质定理4:平行四边形是中心对称图形,对称中心是两条对角线的交点

3.(1)判定定理1:如果一个四边形两组对边分别相等,那么这个四边形是平行四边形简述为:两组对边分别相等的四边形是平行四边形

(2)判定定理2:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形简述为:一组对边平行且相等的四边形是平行四边形

(3)判定定理3:如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形

简述为:对角线互相平分的四边形是平行四边形

(4)判定定理4:如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形简述为:两组对角分别相等的四边形是平行四边形

22.3特殊的平行四边形

1.有一个内角是直角的平行四边形叫做矩形

2.有一组邻边相等的平行四边形叫做菱形

3.矩形的性质定理1:矩形的四个角都是直角

2:矩形的两条对角线相等

菱形的性质定理1:菱形的四条边都相等

2:菱形的对角线互相垂直,并且每一条对角线平分一组对角

4.矩形的判定定理1:有三个内角是直角的四边形是矩形

2:对角线相等的平行四边形是矩形

菱形的判定定理1:四条边都相等的四边形是菱形

2.:对角线互相垂直的平行四边形是菱形

5.有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形

6.正方形的判定定理1:有一组邻边相等的矩形是正方形

2:有一个内角是直角的菱形是正方形

7.正方形的性质定理1:正方形的四个角都是直角,四条边都相等

2:正方形的两条对角线相等,并互相垂直,每条对角线平分一组对角22.4梯形

1.一组对边平行而另一组对边不平行的四边形叫做梯形

2.梯形中,平行的两边叫做梯形的底(短—上底;长—下底);不平行的两边叫做梯形的腰;两底之间的距离叫做梯形的高

3.有一个角是直角的梯形叫做等腰梯形

4.两腰相等的梯形叫做等腰梯形

22.5等腰梯形

1.等腰梯形性质定理1:等腰梯形在同一底商的两个内角相等

2.性质定理2.:等腰梯形的两条对角线相等

3.等腰梯形判定定理1:在同一底边上的两个内角相等的梯形是等腰梯形

4.判定定理2:对角线相等的梯形是等腰梯形

22.6三角形、梯形的中位线

1.联结三角形两边中点的线段叫做三角形的中位线

2.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半

3.联结梯形两腰中点的线段叫做梯形的中位线

4.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半

22.7平面向量

1.规定了方向的线段叫做有向线段,有向线段的方向是从一点到另一点的指向,这时线段的两个端点有顺序,我们把前一点叫做起点,另一点叫做终点,画图时在终点处画上箭头表示它的方向

2.既有大小。又有方向的量叫做向量,向量的大小也叫做向量的长度(或向量的模)

3.方向相同且长度相等的两个向量叫做相等的量

4.方向相反且长度相等的两个向量叫做互为相反向量

5.方向相同或相反的两个向量叫做平行向量

22.8平面向量的加法

1.求两个向量的和向量的运算叫做向量的加法

2.求不平行的两个向量的和向量时,只要把第二个向量与第一个向量收尾相接,那么以第一个向量的起点为起点、第二个向量的终点为终点的向量就是和向量,这样的规定叫做向量加法的三角形法则

3.一般地,我们把长度为零的向量叫做零向量

4.向量的加法满足交换律、结合律

22.9平面向量的减法

1.已知两个向量的和及其中一个向量,求另一个向量的运算叫做向量的减法

2.在平面内任取一点,以这点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点、被减向量的终点为终点的向量;求两个向量的差向量的规定叫做向量减法的三角形法则

3.减去一个向量等于加上这个向量的相反向量

4.向量加法的平行四边形法则

八年级数学上册期末复习

分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.