最新高三数学试卷讲评教案文案1
教学目标
(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
(2)正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。
(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.
教学建议
(一)教材分析
1、知识结构
本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.
2、重点、难点分析
(1)正确复数的实部与虚部
对于复数 ,实部是 ,虚部是 .注意在说复数 时,一定有 ,否则,不能说实部是 ,虚部是 ,复数的实部和虚部都是实数。
说明:对于复数的定义,特别要抓住 这一标准形式以及 是实数这一概念,这对于解有关复数的问题将有很大的帮助。
(2)正确地对复数进行分类,弄清数集之间的关系
(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:
①化为复数的标准形式
②实部、虚部中的字母为实数,即
(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:
①任何一个复数 都可以由一个有序实数对( )确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的.
②复数 用复平面内的点Z( )表示.复平面内的点Z的坐标是( ),而不是( ),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1· ,所以用复平面内的点(0,1)表示 时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的距离就是虚数单位 ,或者 就是纵轴的单位长度.
③当 时,对任何 , 是纯虚数,所以纵轴上的点( )( )都是表示纯虚数.但当 时, 是实数.所以,纵轴去掉原点后称为虚轴.
由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.
④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.要学生注意.
(5)关于共轭复数的概念
设 ,则 ,即 与 的实部相等,虚部互为相反数(不能认为 与 或 是共轭复数).
教师可以提一下当 时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当 时, 与 互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.
(6)复数能否比较大小
教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:
①根据两个复数相等地定义,可知在 两式中,只要有一个不成立,那么 .两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.
②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”
(二)教法建议
1.要注意知识的连续性:复数 是二维数,其几何意义是一个点 ,因而注意与平面解析几何的联系.
2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想.
3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.
最新高三数学试卷讲评教案文案2
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
最新高三数学试卷讲评教案文案3
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析
教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想
1.教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法
引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标
通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
五、教学重点与难点
重点:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。 难点:
①理解等差数列“等差”的特点及通项公式的含义。 ②理解等差数列是一种函数模型。 关键:
等差数列概念的理解及由此得到的“性质”的方法。
六、教学过程(略)
最新高三数学试卷讲评教案文案4
整体设计
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
重点难点
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
教学难点:准确比较两个代数式的大小.
课时安排
1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
推进新课
新知探究
提出问题
?1?回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
?2?在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
?3?数轴上的任意两 点与对应的两实数具有怎样的关系?
?4?任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例3:若一个数是非负数,则这个数大于或等于零.
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
变式训练
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
A.f(x)>g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.
∴a4-b4<4a3(a-b).
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
变式训练
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
当y<0时,x-yy<0,即xy-1<0. ∴xy<1;
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a
变式训练
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
课堂小结
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
作业
习题3—1A组3;习题3—1B组2.
设计感想
1.本节设计关注了教学方法 的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
最新高三数学试卷讲评教案文案5
一、教学内容解析
一元二次不等式的解法是高中数学最重要的内容之一,在高中数学中起着广泛的应用工具作用,蕴藏着重要的数形结合思想,是代数、三角、解析几何交汇综合的部分,在高中数学中具有举足轻重的地位。
教科书中对一元二次不等式的解法,没有介绍较繁琐的纯代数方法,而是采取简洁明了的数形结合的方法,从具体到抽象,从特殊到一般,用二次函数的图象来研究一元二次不等式的解法。教学中,利用几何画板的动态演示功能,引导学生结合二次函数的图象探究一元二次不等式、一元二次方程、二次函数“三个二次”间的联系,归纳总结出一元二次不等式的求解过程。通过对一元二次不等式解集的探究过程,渗透函数与方程、数形结合、分类讨论等重要的数学思想。
一元二次不等式的解法是程序性较强的内容,探究中应注意对“特例”的处理,让学生注意对“特殊情况”的处理,才能让学习的内容更加完整。
因此,本节课教学的重点是围绕一元二次不等式的解法,通过图象了解一元二次不等式与相应函数、方程的联系,突出体现数形结合的思想。
二、教学目标解析
1. 通过对一元二次不等式解法的探究,让学生了解一元二次不等式与相应函数、方程的联系。
2. 掌握一元二次不等式的求解步骤,尤其是对“特例”的处理。
3. 通过图象解法渗透数形结合、分类化归等重要的数学思想,培养学生动手能力,观察分析能力、抽象概括能力、归纳总结等系统的逻辑思维能力,培养学生简约直观的思维方法和良好的思维品质。
三、学生学情分析
学生已有的认知基础是,学生已经学习了二次函数、一元二次方程、函数的零点等有关知识,为本节课的学习打下了基础。
学生根据具体的二次函数的图象得对应一元二次不等式的解集时问题不大,学生可能存在的困难:(1)二次函数是初中学习的难点,许多学生对二次函数的知识掌握欠缺,对本节课的顺利开展有一定的影响;(2)从特殊的一元二次不等式的求解到一般的一元二次不等式的求解,学生全面考虑不同情况下的解集有一定的困难。教学中,(1)教师可提前让学生复习二次函数的有关知识点,为本节课的学习扫清障碍。(2)利用几何画板的动态演示功能,通过变换二次函数图象,引导学生在变化中寻找不变的规律,从而得出影响一元二次不等式解集的因素,确定分类的标准,全面考虑一元二次不等式解的情况。
因此,本节课教学的难点是探究一元二次不等式 的解集。
四、教学策略分析
依据本节课的教学内容,采用启发引导式教学。教学中启发学生一元二次不等式的解法可以类比“一元一次不等式与一次函数、一元一次方程三者间的关系”,利用二次函数的图象进行求解。从特殊到一般,从具体到抽象,通过几何画板的动态演示,引导学生观察、猜想、主动发现一元二次方程、一元二次不等式与二次函数的关系,得出一元二次不等式的求解步骤。教学中让学生通过动手实践、自主探索、合作学习完成学习过程,从动态中观察、探索归纳知识。
为了有效实现教学目标,教学中通过几何画板动态演示函数图象上的点在移动时,随着横坐标的变化,纵坐标的取值变化情况,更直观地向学生展示 或 时对应的 的取值范围。利用图象的直观性,观察二次函数图象的变化对一元二次不等式解集的影响,恰当确定分类的标准,有效解决教学中的难点。
五、教学过程设计
新课导入:刚才我们回顾了初中学过的一元一次方程、一元一次不等式、一次函数三者间的联系,利用这种联系可以快速准确地求出一元一次不等式的解集。那么对于一元二次不等式能否用类似的方法求解?我们以上网计时收费问题中得到的一元二次不等式 为例进行探究。
问题一:如何求一元二次不等式 的解集?
设计意图:通过具体的例子,观察三个二次的关系,直观理解一元二次不等式的求法,由特殊到一般。
引导一:画出二次函数 的草图。
引导二:观察一元二次方程 、一元二次不等式 、一元二次函数 三者间有何联系?
引导三:要写出一元二次不等式 的解集,需要确定哪些量?
师生活动:教师引导学生思考三个二次的关系,首先画出函数 的图象。让学生通过观察图象,发现“一元二次方程 的两个根是对应二次函数 的零点”的结论,一元二次不等式 的解即是二次函数 的图象上函数值 时对应的 的取值。利用几何画板的动态演示功能,在函数 的图象上任取一点 ,观察当点 在抛物线上移动时,随着 的横坐标的变化, 的纵坐标有什么变化,借用动态演示帮助看图有困难的同学。
问题二:探究一元二次不等式 的解集。
设计意图:进一步加深学生对“三个二次”间关系的理解,通过二次函数图象的动态变化,寻找出恰当的分类标准,写出二次不等式的解集,从具体到抽象。
引导一:要得到一个一元二次不等式的解集,关键应考虑哪些因素?
师生活动:教师利用几何画板的动态演示功能,改变二次函数 中的常数 的值,让学生观察随着函数图象的变化,不等式的解的变化情况,在变化中寻找不变的规律,从而得出确定一元二次不等式解集的两个因素:(1)对应的一元二次方程的根的情况;(2)对应的二次函数的开口方向。
引导二:应如何分类讨论一元二次不等式的解集?
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
七年级历史优秀教案最新范文
政治教学工作任务总结计划五篇
初中生物课堂教学方法有哪些
高三文科数学复习教案五篇最新
高三文科数学复习教案五篇最新
中职高三数学教案范文
最新高三数学教案模板
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
高三数学一轮复习教案全套文案
高考数学二轮复习教案文案
最新高考数学一轮复习经典教案
高三数学艺体文化培训教案文案
高三数学综合测试教案五篇最新
高三年级数学教案最新范文
中职高三数学教案全套文案
最新高考数学第一轮复习教案
高三文科数学第二轮专题教案例文
高中数学学期末教学总结