最新2021年高考数学一轮复习经典教案1
本文题目:高三数学复习教案:随机事件的概率教案
●考点目标定位
1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.
2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.
3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.
●复习方略指南
概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000年被列入新课程高考的考试说明.
在2000,2001,2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12∶150=1∶12.5)是在数学中课时比(约为11∶330=1∶30)的2.4倍.概率试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.
11.1 随机事件的概率
●知识梳理
1.随机事件:在一定条件下可能发生也可能不发生的事件.
2.必然事件:在一定条件下必然要发生的事件.
3.不可能事件:在一定条件下不可能发生的事件.
4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.
5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是 .如果某个事件A包含的结果有m个,那么事件A的概率P(A)= .
6.使用公式P(A)= 计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.
●点击双基
1.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是
A. B. C. D.
解析:基本事件总数为C ,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C ,后者C C .
∴A中基本事件数为C +C C .
∴符合要求的概率为 = .
答案:C
2.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为
A. B. C. D.
解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .
∴所求概率为 = .
答案:B
3.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是
A. B. C. D.
解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为 = ,由对立事件概率公式,知3次至少出现一次6点向上的概率是1- = .
答案:D
4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.
解析:恰有3个红球的概率P1= = .
有4个红球的概率P2= = .
至少有3个红球的概率P=P1+P2= .
答案:
5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.
解析:P= = .
答案:
●典例剖析
【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.
解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C 种,另一个不同数字的取法有C 种.而这取出的五个数字共可排出C 个不同的五位数,故恰有4个相同数字的五位数的结果有C C C 个,所求概率
P= = .
答:其中恰恰有4个相同数字的概率是 .
【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是 ,求该班中男女生相差几名?
解:设男生有x名,则女生有(36-x)人,选出的2名代表是同性的概率为P= = ,
即 + = ,
解得x=15或21.
所以男女生相差6人.
【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:
(1)无空盒的概率;
(2)恰有一个空盒的概率.
解:4个球任意投入4个不同的盒子内有44种等可能的结果.
(1)其中无空盒的结果有A 种,所求概率
P= = .
答:无空盒的概率是 .
(2)先求恰有一空盒的结果数:选定一个空盒有C 种,选两个球放入一盒有C A 种,其余两球放入两盒有A 种.故恰有一个空盒的结果数为C C A A ,所求概率P(A)= = .
答:恰有一个空盒的概率是 .
深化拓展
把n+1个不同的球投入n个不同的盒子(n∈N_).求:
(1)无空盒的概率;(2)恰有一空盒的概率.
解:(1) .
(2) .
【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:
(1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?
解:5把钥匙,逐把试开有A 种等可能的结果.
(1)第三次打开房门的结果有A 种,因此第三次打开房门的概率P(A)= = .
(2)三次内打开房门的结果有3A 种,因此,所求概率P(A)= = .
(3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A A 种,从而三次内打开的结果有A -A A 种,所求概率P(A)= = .
方法二:三次内打开的结果包括:三次内恰有一次打开的结果有C A A A 种;三次内恰有2次打开的结果有A A 种.因此,三次内打开的结果有C A A A +A A 种,所求概率
P(A)= = .
特别提示
1.在上例(1)中,读者如何解释下列两种解法的意义.P(A)= = 或P(A)= ? ? = .
2.仿照1中,你能解例题中的(2)吗?
●闯关训练
夯实基础
1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为
A. B. C. D.
解析:P= = .
答案:B
2.甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是
A. B. C. D.
最新2021年高考数学一轮复习经典教案2
【考纲要求】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
最新2021年高考数学一轮复习经典教案3
【高考要求】:简单复合函数的导数(B).
【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数.
2.会用复合函数的导数研究函数图像或曲线的特征.
3.会用复合函数的导数研究函数的单调性、极值、最值.
【知识复习与自学质疑】
1.复合函数的求导法则是什么?
2.(1)若 ,则 ________.(2)若 ,则 _____.(3)若 ,则 ___________.(4)若 ,则 ___________.
3.函数 在区间_____________________________上是增函数, 在区间__________________________上是减函数.
4.函数 的单调性是_________________________________________.
5.函数 的极大值是___________.
6.函数 的值,最小值分别是______,_________.
【例题精讲】
1. 求下列函数的导数(1) ;(2) .
2.已知曲线 在点 处的切线与曲线 在点 处的切线相同,求 的值.
【矫正反馈】
1.与曲线 在点 处的切线垂直的一条直线是___________________.
2.函数 的极大值点是_______,极小值点是__________.
(不好解)3.设曲线 在点 处的切线斜率为 ,若 ,则函数 的周期是 ____________.
4.已知曲线 在点 处的切线与曲线 在点 处的切线互相垂直, 为原点,且 ,则 的面积为______________.
5.曲线 上的点到直线 的最短距离是___________.
【迁移应用】
1.设 , , 若存在 ,使得 ,求 的取值范围.
2.已知 , ,若对任意 都有 ,试求 的取值范围.
最新2021年高考数学一轮复习经典教案4
本文题目:高三数学复习教案:概率统计复习
一、 知识梳理
1.三种抽样方法的联系与区别:
类别 共同点 不同点 相互联系 适用范围
简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少
系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多
分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4) 要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=
特别提醒:古典概型的两个共同特点:
○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2 ,即每个基本事件出现的可能性相等。
4. 几何概型的概率公式: P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是 ;
优秀率为 。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一个分和一个最低分后,所剩数据的平均值
和方差分别为( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
; 第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为 ,成绩大于等于15秒
且小于17秒的学生人数为 ,则从频率分布直方图中可分析
出 和 分别为( )
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )
分数 5 4 3 2 1
人数 20 10 30 30 10
09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).
08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.
最新2021年高考数学一轮复习经典教案5
本文题目:高三数学复习教案:古典概型复习教案
【高考要求】古典概型(B); 互斥事件及其发生的概率(A)
【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;
2、 理解古典概型的特点,会解较简单的古典概型问题;
3、 了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.
【知识复习与自学质疑】
1、古典概型是一种理想化的概率模型,假设试验的结果数具有 性和 性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.
2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .
3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是 。
4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,“向上的两个数字之和为3”的概率是 .
5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .
6、(B)若实数 ,则曲线 表示焦点在y轴上的双曲线的概率是 .
【例题精讲】
1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
2、(B)黄种人群中各种血型的人所占的比例如下表所示:
血型 A B AB O
该血型的人所占的比(%) 28 29 8 35
已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:
(1) 任找一个人,其血可以输给小明的概率是多少?
(2) 任找一个人,其血不能输给小明的概率是多少?
3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.
4、(B)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;
(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.
【矫正反馈】
1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .
2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .
3、(A)某射击运动员在打靶中,连续射击3次,事件“至少有两次中靶”的对立事件是 .
4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .
5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.
【迁移应用】
1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .
2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为 .
3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .
4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .
5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.
(1)若点P(a,b)落在不等式组 表示的平面区域记为A,求事件A的概率;
(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率,求m的值.
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
政治老师教学学习计划范文五篇
七年级下册历史复习教案范文
生物理论课教学方法有哪些
高三数学艺体文化培训教案文案
高三数学艺体文化培训教案文案
高三数学综合测试教案五篇最新
高三年级数学教案最新范文
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
中职高三数学教案全套文案
最新高考数学第一轮复习教案
高三文科数学第二轮专题教案例文
高中数学学期末教学总结
高三数学复习有效指导归纳
高三数学复习方法整理
高三数学一轮复习必备资料的整理归纳
高三数学考前总复习攻略归纳整理
最新一年级数学9加几教案五篇
高三数学期末专题复习归纳大全