五年级数学学习方法五篇

莉落老师

五年级数学学习方法1

  五年级下学期是前的最后一个学期,对于整个小学阶段的数学学习起着至关重要的作用,只有这一关过好了,才可能在的备考中游刃有余。所以这学期的奥数学习应该有更强的针对性,针对自己的实际情况和目标选择合适的班型。

  学习重点难点解析:

  五年级属于小学高年级,孩子进入五年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力都比以前有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,所以是否把握住五年级这个黄金时段,关系到以后的成与败。那么在整个五年级阶段都有哪些重点知识呢?为了孩子更好的把握五年级的学习重点,下面就介绍一下五年级的关键知识点。

  1.进入数学宝库的分析方法——递推方法:任何事物的发展总是从简单到复杂,奥数也是一样,对于复杂问题,我们不妨先从最简单的情况入手,通过处理简单的问题,我们可以从中得到规律或者诀窍,从而来解决复杂的问题,这就是递推方法。比如说:平面上20xx条直线最多有几个交点?同学们第一眼看到这个问题时,肯定会想画20xx条直线相交然后再数交点个数,那该是多麻烦啊!其实我们可以先来解决简单点的情况,分别找到1条、2条、3条、4条……这些直线有多少个交点。

  1条直线最多有0个交点

  2条直线最多有1个交点

  3条直线最多有3个交点

  4条直线最多有6个交点

  5条直线最多有10个交点

  6条直线最多有15个交点

  ……

  所以20xx条直线有1+2+3+4+5+…+20xx=2015028个交点。

  那么聪明的你,你能算出20xx条直线最多可以把圆分成几部分么?

  2.变化无穷、形迹不定的行程问题:提到行程问题,同学们可能就感到头疼,的确不错,因为行程问题中各个物体的速度、时间、路程都在变化,而且各个物体都是在运动中,位置是随着时间在变化,所以分析起来就很麻烦,为了更好的解决这个问题,我们把行程问题进行了细分:基本行程(单个物体)、平均速度、相遇、追及、流水行船、火车过桥、火车错车、钟表问题、环形线路上行程。只要我们掌握这些每个小类型中的诀窍,形成一种分析思路,复杂的行程问题无非是这些类型的变形而已,解决起来就容易多了。

  3.抽象而又杂乱的数论问题:数论是从五年级的核心知识,无论是在哪本教材里,都用了很多的章节来讲解数论,要想解决复杂的数论问题,我们首先得掌握数论的基本知识:数的奇偶性、约数(现在叫因数)、倍数、公约数及最大公约数、公倍数及最小公倍数、质数、合数、分解质因数、整除、余数及同余等。这些基本知识点里又有些非常有代表性的例题,只要能掌握好这些知识点,然后做一定量的数论综合习题,碰到难的数论问题我们就容易解决了。

  4.有趣的抽屉原理:生活中有很多有趣的事情,比如说:把4个苹果放到3个抽屉里,无论你怎么放,总有某个抽屉里至少有2个苹果,这就是抽屉原理。

  对于抽屉原理我们只要找到苹果的个数a与抽屉的个数b,我们就可以得到下面的结论:

  若a÷b=r……

  当q=0时,我们就说总有某个抽屉里至少有r个苹果;

  当q0时,我们就说总有某个抽屉里至少有(r+1)个苹果。

  比如说把32个苹果放进8个抽屉里,因为32÷8=4,无论怎么放,总有某个抽屉里有4个苹果。如果把35个苹果放进8个抽屉里,因为35÷8=4……3,无论怎么放,总有某个抽屉里有4+1=5个苹果。

  但是大部分的奥数题是没有告诉我们抽屉的个数的,那样我们就得自己构造抽屉,从而找出抽屉的个数。

  5.图形面积计算:求图形的面积也是奥数中的一个难点,对于这类题我们首先要掌握好各种基本图形的面积计算公式,然后记住一些重要的结论:比如说三角形的等积变形、直角三角形中30度所对的边是斜边的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中边与面积的关系。在计算面积时的方法有:直接计算法、割补法、方程法等。在图形面积计算中,难题往往得添加辅助线,这个就是难点所在,因为添加辅助线非常灵活,这就要我们多做些这方面的题,多积累一些添加辅助线的技巧,做到心中有数。

五年级数学学习方法2

  小学五年级数学学习方法五条

  主动预习

  主动预习,不仅能提前了解上课内容,在听课的时候有的放矢,还能锻炼孩子的自学能力。

  具体做法:认真阅读教材,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

  如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

  抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  掌握思考问题的方法

  “把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”

  一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题,比如上题。

  同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。

  这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;

  从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,

  经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。

  有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

  小学五年级数学解题技巧

  1、对照法

  如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

  这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

  例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

  对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

  例2:判断题:能被2除尽的数一定是偶数。

  这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

  2、公式法

  运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

  例3:计算59×37+12×59+59

  59×37+12×59+59

  =59×(37+12+1)…………运用乘法分配律

  =59×50…………运用加法计算法则

  =(60-1)×50…………运用数的组成规则

  =60×50-1×50…………运用乘法分配律

  =3000-50…………运用乘法计算法则

  =2950…………运用减法计算法则

  3、比较法

  通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

  比较法要注意:

  (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

  (2)找联系与区别,这是比较的实质。

  (3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

  (4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

  (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

  例4:填空:0.75的位是(),这个数小数部分的位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。

  这道题的意图就是要对“一个数的位和小数部分的位的区别”,还有“数位和数值”的区别等。

  例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

  这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

  找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

  找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

  4、分类法

  根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

  分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

  例6:自然数按约数的个数来分,可分成几类?

  答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

  5、分析法

  把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

  依据:总体都是由部分构成的。

  思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

  也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

  例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

  思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

  小学五年级上册数学复习计划

  一、把知识分块,进行分类整理复习。

  五年级数学一共七个单元,但是重点知识分为三块,一是计算类:小数乘除法和解简易方程;二是图形面积类:平行四边形、三角形、梯形以及组合图形的面积计算;三是问题解决:小数乘除法的解决问题以及用方程解决问题。把知识分类也能让学生明了本册学习的重点内容,在练习时能对症下药,即题目到底是考查了哪一个知识点,这样学生面对一些陌生的题目时也不会手足无措。

  二、多训练计算。

  本学期的计算占的比重相当大,于是让每个学生都掌握计算法则,会计算每种类型的题目。最近一个月我每天会让学生做六道计算题。虽然让学生练习了,但是我做的并不好,检查不到位,只是让小组长把这个家庭作业落实,学生纠错率不高。在接下来的一段时间我准备在课代表以及小组长的配合下,每天不定时抽查学生的家庭作业,并掌握每个学生的计算能力,程度的在基础计算上让学困生得分。

  三、把每班学生按不同程度分类。

  优等生、中等程度的学生、学困生。在复习时有所侧重,优等生在掌握基础题的同时,多做一些拔高的习题;中等生能够把基础知识、概念、计算做的非常扎实,拔高题并不做要求;学困生是个大难题,他们基础差,学习习惯不好,甚至有厌学情绪,多让他们在学习中体验成功乐趣是重点,让他们有学习的欲望,基本的小数乘除法、简单的方程,一定要重复训练,对他们进行模式训练,记忆为主。

  “一帮一计划“也有所改动,原来优等生带学困生,但是实施过程中发现,有些学生在给学困生讲题时,极其不耐烦,总是听到有人抱怨认为很简单的题目也不会做,影响很不好,于是我大胆决定,让优等生帮助中等生,中等生带学困生,这样差距小一些,实施起来也比较容易些,而且发挥中等生的作用,一方面避免了有些中等生听不懂装懂,理解知识不透彻的坏习惯,另一方面通过帮助别人他也能体验成功,对自身提高很有帮助。

  最后,复习一定不要只顾做试卷而脱离课本,且不说期末考试的题目都是书上例题的变形,更重要的是课本上的习题都是基于课程标准的,不会超纲,有代表性,对于学生理解定义、概念有很大的帮助作用。

  总之,期末复习一定要有计划性,根据本班学生制定一个具有时效性的计划,能对症下药,这样的复习应该会有比较显著的效果!

五年级数学学习方法3

  1、合理安排学习计划

  根据小升初的形势,六年级寒假就应该是综合复习的时候。这样从三年级暑假开始算起,到六年级寒假只有两年半的时间。我们建议学生在两年半时间里一定要扎实学习奥数知识。整个学习过程要按梯度进行,切莫一味做难题,根据学生学习情况,一步一个台阶。兼顾竞赛、仁华、重点学校培训班,早做规划,早做准备。

  2、巩固基础知识

  由于还有一年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。之前的奥数内容以应用题、计算为主。对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。计算问题需要对基本的简算方法了如指掌,因为这些方法也是以后分数计算和综合混合运算的基础。

  3、多做专题练习

  五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌--

  握所做的题目,日积月累,几个重点难点也就不再是老大难问题了。

五年级数学学习方法4

  天津奥数网 五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段,专题的练习有助于知识点和难点的巩固和加强;真题的练习可以为你积累丰富的实战经验。

  五年级的孩子可以尝试参加考试和比赛,获奖对于孩子来说是一个莫大的激励,能够促使他们在奥数学习上兴趣倍增,为以后取得更多的证书以及,奠定坚实的基础。

  爬坡攻坚阶段

  五年级是一个奥数学习的爬坡阶段。如果在这个阶段对奥数进行系统学习,哪怕之前都没怎么接触奥数的孩子,其数学成绩可能有很大幅度的提高。下面我就来说说刚刚接触奥数的同学该怎么学。

  由简单入手

  五年级是有余力进行额外学习的`,但是如果之前没接触过奥数,那么还是从简单入手比较好。一则让孩子通过简单问题逐渐熟悉奥数,一则培养孩子的奥数兴趣,避免接触难题打消学习积极性。

  要迅速过渡

  五年级的学生是属于小学的高年级阶段,虽然是最初接触奥数,也不必按部就班的学。应该辅助一定的练习对几种类型题和专题进行深入分析了理解,掌握专题的解题思路,做到以点概面,迅速过渡到高年级奥数的学习。

  制定学习计划

  所谓系统学习,决不是拿过哪块来就学习哪块,必须要有一个合理的学习计划。通过一段时间简单的学习,家长应注意了解孩子的学习进度,帮助孩子制定一份大体的学习计划。然后严格按照计划进行系统学习。

  重视基础

  奥数是的竞争资本之一。其中大部分重点中学的奥数测试比较重视奥数的基础。而杯赛也基本都是在奥数基础上进行的延伸。所以不论是从的角度还是从提高自身能力的角度考虑,五年级学生都应该重视奥数基础部分。

  量变到质变

  学习到一定阶段之后,也要注重孩子思维方法的培养了,不能总是停留在解题这个阶段。要综合各个题型进行分析学习,通过知识的了解上升到方法的拓展,再到掌握方法举一反三,实现一个质的飞跃!

五年级数学学习方法5

  主动预习

  主动预习,不仅能提前了解上课内容,在听课的时候有的放矢,还能锻炼孩子的自学能力。

  具体做法:认真阅读教材,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

  如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

  抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  掌握思考问题的方法

  “把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”

  一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题,比如上题。

  同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。

  这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;

  从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,

  经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。

  有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

  掌握思考问题的方法

  解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

  (1)本题最重要的特点是什么?

  (2)解本题用了哪些基本知识与基本图形?

  (3)本题你是怎样观察、联想、变换来实现转化的?

  (4)解本题用了哪些数学思想、方法?

  (5)解本题最关键的一步在那里?

  (6)你做过与本题类似的题目吗?在解法、思路上有什么异同?

  (7)本题你能发现几种解法?其中哪一种?那种解法是特殊技巧?

  你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。