数学学习方法十五篇)

秦风学老师

  高考数学考试的一个特点是研究题目就可以获得解题的方法,所以高三的同学们可以再课后或平时的时候对历届的真题进行研究分析,总结出一些解题的方法。而对于平时高中数学学得比较好的学生来说,学会总结解题的思维而做到快速接替,把所有的题目固定成一种思维,同时再总结出变型的主要原则。

  3、对教材合理利用

  高三考试的时候的题目其实都是万变不离教材的,很多的考试题目就是源于教材的例题和习题,所以高三的同学们一定要重视对教材的重视,课本中的例题和习题等是高三复习数学的宝贵资源,重新审视和总结高中数学其中所蕴含的疑难点以及解题方法和数学思想,这样才可以对数学的学习有一种全新的感悟。

数学学习方法9

  数学被誉为科学的皇后,在中考中数学成绩的好坏往往是成功与否的关键因素。

  想要学好初中数学首先要过的是心理关。任何事情都有一个由量变到质变的循序渐进的积累过程。刚刚进入初一的同学经常会感到刻苦努力学习了一阵,收效甚微,便垂头丧气,认为自己天生不是学数学的料;或者由于一次考试的失败,丧失了对数学的信心。这些都是初中数学学习的弊端,学数学要有决心,信心,更要有一套适合自己的有效学习方法。

  学习数学应该按照五个步骤进行:

  一预习

  对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

  二听讲

  这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

  三复习

  体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

  四作业

  认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

  五总结

  这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

  如何挑选及处理习题

  一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历年的考试真题是最好的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。

  二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。

  要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的反思,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。

  三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。

  因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”

  以上,就是我在过去教学中发现的学习数学的弊端及如何取得高分得一些体会 初中数学。在此与同学们共同分享。数学并不难,只要大家掌握了正确的学习方法,勤于思考,努力钻研,胜利的曙光就在眼前!

数学学习方法10

  1、变介绍方法为选择方法

  高三学生的头脑中已经储存了很多解题方法和规律,如何提取运用是第二轮数学复习的关键。“给出方法解题目”不可取,必须“给出习题选方法”。选法是思维活动,只要在如何选上做文章,才能解决好学生自做不会,老师一讲就通的问题。

  2、变全面覆盖为重点讲练

  第二轮数学复习仅有两个半月的时间,从面面俱到从头来过一遍是根本做不到。要做到紧紧围绕重点方法,重要的知识点,重要的数学思想和方法以及近几年的重点题型,狠抓过关。

  3、变以量为主为以质取胜

  高三数学复习中一切的讲练都是要围绕学生展开的,贪多嚼不烂,学生如果消化不了,那么,讲再多也没有用。只有重质减量,才能有利于学生更好的掌握知识,减少练习量,不是指不做或是少做,而是要在精选上下功夫,要做到非重点的就少做甚至是不做。

  4、变以“补弱”为主为“扬长补弱”并举

  虽然影响学生的数学成绩的因素很多,但是学习兴趣和爱好与成绩绝对是相辅相成的。所以一味的强调“补弱”是不科学的,要因人而异,因成绩而异。一般,成绩居中上游的学生,应以“扬长”为主,居下游的学生,应以补弱为主。处理好扬长、补弱的关系,才是正确的做法。

数学学习方法11

  初中数学的学习方法讲解

  例题的学习,对数学的学习很重要,希望同学们多看一下例题,可以很好的帮助同学们对数学知识的学习哦。

  多看一些例题。

  细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大

  忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:

  1。不能只看皮毛,不看内涵。

  我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易

  了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。

  2。要把想和看结合起来。

  我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。

  3。各难度层次的例题都照顾到。

  看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。

  这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。

  学好数学,看例题是很重要的一个环节,切不可忽视。希望同学们考试成功哦。

  中小学数学公式大全之追及问题

  同学们认真看看,下面是老师对数学中关于追及问题公式的讲解,希望同学们很好的掌握。

  追及问题

  追及距离=速度差×追及时间

  追及时间=追及距离÷速度差

  速度差=追及距离÷追及时间

  相信上面对数学中追及问题的相关公式知识已经很好的掌握了吧,希望同学们在考试中取得优异成绩哦,加油吧!

  中小学数学公式大全之流水问题

  下面是对数学中,关于流水问题的公式内容讲解,相信同学们会从中学习的更好的吧。

  流水问题

  顺流速度=静水速度+水流速度

  逆流速度=静水速度-水流速度

  静水速度=(顺流速度+逆流速度)÷2

  水流速度=(顺流速度-逆流速度)÷2

  以上对数学中流水问题知识的内容讲解学习,希望可以给同学们的学习很好的帮助,预祝大家在考试中取得优异成绩哦。

  中小学数学公式大全之浓度问题

  关于数学中浓度问题的知识,希望同学们很好的完成下面的公式讲解内容哦。

  浓度问题

  溶质的重量+溶剂的重量=溶液的重量

  溶质的重量÷溶液的重量×100%=浓度

  溶液的重量×浓度=溶质的重量

  溶质的重量÷浓度=溶液的重量

数学学习方法12

  先易后难

  算术是比较复杂的,而对孩子来说,如果一开始就让他们学习较难的算术,很难让他们接受。家长可以将生活融入到孩子的数学学习中,例如去超市买苹果,让孩子自己挑选,并数出数量,等到回到家的时候,家长可以让孩子洗两个苹果,一人一个吃掉后,问孩子还有多少个苹果。通过这种方式,让孩子在生活中不知不觉的接触数学并学习数学,可以提高孩子对数学的兴趣,而且也能够帮助孩子理解数学在生活中的重要性。

  运用分解技巧

  从分解组合开始教孩子,一边分,一边用语言表述,一定要用嘴巴说出来,能说出来的孩子,表示她自己真的掌握了。从5以内的开始。先从分解2开始。每次分开后表述完,要记得在合起来。

  大数记心里,小数上下加减

  加法:大数记心里,小数往上数,如4+2= 把4记在心里,往上数两个数,5、6,之后得出结果4+2=6

  减法:大数记在心里,小数往下数,如6-3= 把6记在心里,往下数三个数,5、4、3,之后得出结果6-3=3

  家长需配合每日为宝贝出30道10以内加减法,提升幼儿的算术能力,注意不要让孩子数指头,养成习惯不好改,培养心算能力。

  需要孩子掌握的一些识记的东西

  第一个需要识记的是:10加几就等于10几,例如:10+1=11 10+2=12,一直加到9,第二个需要识记的就是1+1=2 2+2=4 3+3=6 4+4=8 5+5=10 6+6=12 7+7=14 8+8=16 9+9=18 10+10=20,这样记住了以后,进行20以外的加减法运算,对孩子来说,就不会很难学;

  巩固成果

  家长要经常给孩子出题目,只要有空闲时间就提问,而且问的时候语速要快,要给孩子一种紧迫感,这样可以锻炼孩子思维的效率,而且多次练习能够让孩子的思维能力不断增强,从而提高算术能力。如果家长在问的时候孩子能够快速的答出来,家长需要对孩子进行表扬,例如“真棒!”,“真厉害!”这些话语,会激发孩子的积极性,让孩子有一定的成就感,对数学算术产生兴趣,认为学习数学是一件很好玩的事情。

  辅导技巧

  要想提高孩子数学加减法能力,一定要让孩子对十以内的加减法熟练,要达到脱口而出的效果,家长在教育孩子的时候千万不能心急,要告诉孩子加减法是一个互补的关系,这样有助于孩子的理解。对于二十以内的加减法,需要建立在孩子熟练掌握十以内加减法之上才行,家长可以找一个横格的本子,在十页纸上随机为孩子出题,将20以内的数字的任何一个组合都顾及到,帮助孩子更深刻记忆。

  通过孩子数学加减法的学习,能够锻炼孩子的感知和思维,为将来的学习打好初步基础,家长可以参考以上讲解的三个方面,增强孩子学算术的兴趣,调动孩子的积极性,并让他们将学到的知识运用到生活中去。

数学学习方法13

  一、抓《考试说明》与信息研究

  在二轮复习中,不可能再像一轮复习一样面面俱到。那么怎么提高复习效率呢?这就要求学生必须认真研究《考试说明》,吃透精神实质,抓住考试内容和能力要求。捕捉高考信息,吸收新课程的新思想、新理念,从而转化为课堂教学的具体内容,使复习有的放矢,事半功倍。

  二、突出对课本基础知识的再挖掘

  近几年高考数学试题坚持新题不难,难题不怪的命题方向。甚至一些高考试题能在课本上找到原型。尽管剩下的复习时间不多,但仍要注意回归课本,只有透彻理解课本例题,和习题中所涵盖的数学知识和解题方法,才能以不变应万变。当然回归课本不是让你死记硬背,而是对着课本目录回忆和梳理知识,对典型问题进行引申,发挥它该有的作用。

  三、抓好专题复习,领会数学思想

  高考数学第二轮复习重在知识和方法专题的复习。你的基础知识在第一轮应该掌握的差不多了,第二轮复习主要是进一步巩固第一轮复习的成果。加强各版块知识的融合。尤其注意知识的交叉点和结合点,进行必要的针对性专题复习,比如函数和导数、立体几何等等。

  四、加强思维训练,规范答题过程

  解题一定要非常规范,不怕难题不得分,就怕每道题都失分。所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。要一步一步答题,重视解题过程的语言表达,培养学生条理清楚,步步有据,规范简洁,优美整齐的答题习惯。在第二轮复习中我们认真学习高考评分标准,学会踩得分点。

  五、及时总结反思,明确改进方向

  做题并不是盲目的,在做题成套的模拟题之后,要将多套的练习题放在一起比较才能诊断出你的错误和不足。重做错题,分析错误原因,找准对策,并及时请教同学和老师,及时查漏补缺,将问题解决在考前,这是每一名学生的重要任务。高考复习学生需要大量练习,很多同学为了赶时间,往往是只重视解题思路,不按规定格式解题,导致很多题目会而不对,对而不全。可见规范答题的重要性。

数学学习方法14

  数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。

  步骤/方法

  深刻理解概念。

  概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。

  多看一些例题。

  细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:

  不能只看皮毛,不看内涵。我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。

  要把想和看结合起来。我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。各难度层次的例题都照顾到。

  看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。

  多做练习。

  要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。必须熟悉各种基本题型并掌握其解法。课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。多做综合题。综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。

  如何对待考试

  学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。

  功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。

  应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。

  考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。

数学学习方法15

  很多数学零基础的同学想跨专业考研,最终因为数学这一拦路虎而放弃。大家都存在此类疑问,没有基础能学好数学吗?事实上只要考生端正心态,将基础知识打牢固,考研是没有问题的。下面说一下这类考生该如何着手准备复习。

  高等数学:高等数学的分值重,是三门课程中最为重要的一科,在学习高数的过程中,要注意每种题型的训练,重点是总结,把在基础阶段不懂的知识点,强化记忆,然后系统地梳理知识点。认真研读大纲要求,在复习的过程中明确考试重点,充分把握重点。

  高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。另外还有曲线和曲面积分,这是数一必考的重点内容。一阶微分方程,掌握几个教材中的几种类型的求解就可以了。还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。

  线性代数:线性代数考试题型不多,计算方法比较初等,但是往往计算量比较大,导致很多考生对线性代数感到棘手。从理论的角度出发,线性代数的很多概念和性质之间的联系很多,特别要根据每年线性代数的两道大题考试内容,找出所涉及到的概念与方法之间的联系与区别。例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。

  复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。

  概率论与数理统计:概率论与数理统计课程的主要特点是概念和公式繁多,章节的关系松散,应用题比较抽象,所以复习时要注重这些概念的理解。第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但这两章要深刻理

  解,只有这部分内容透彻理解后面的内容才能容易掌握。概率部分要重点掌握的是二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望、方差、协方差、相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且主要考计算。最后,这部分难点是多维随机变量的函数的分布。这个考点最近几年每年必考,并且主要以大题的形式出现。虽然是难点,但是方法还是比较固定的,掌握每种题型的方法即可。大数定律和中心极限定理不是考试的重点,考纲要求是了解,所以只要掌握定理的条件和结论。数理统计部分主要围绕三大统计量分布,点估计是这部分内容的重难点,经常会考解答题。统计量的评选标准中的无偏估计要重点复习,有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。