三角函数的图象与性质教学设计
●知识梳理
1.三角函数的图象和性质
函 数
性 质=sinx=csx=tanx
定义域
值域
图象
奇偶性
周期性
单调性
对称性
注:读者自己填写.
2.图象与性质是一个密不可分的整体,研究性质要注意联想图象.
●学生练习
1.函数=sin( -2x)+sin2x的最小正周期是
A.2πB.πC. D.4π
解析:= cs2x- sin2x+sin2x= cs2x+ sin2x=sin( +2x),T=π.
答案:B
2.若f(x)sinx是周期为π的奇函数,则f(x)可以是
A.sinxB.csxC.sin2xD.cs2x
解析:检验.
答案:B
3.函数=2sin( -2x)(x∈[0,π])为增函数的区间是
A.[0, ]B.[ , ]
C.[ , ]D.[ ,π]
解析:由=2sin( -2x)=-2sin(2x- )其增区间可由=2sin(2x- )的减区间得到,即2π+ ≤2x- ≤2π+ ,∈Z.
∴π+ ≤x≤π+ ,∈Z.
令=0,故选C.
答案:C
4.把=sinx的图象向左平移 个单位,得到函数____________的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,得到函数____________的图象.
解析:向左平移 个单位,即以x+ 代x,得到函数=sin(x+ ),再把所得图象上所有点的横坐标伸长到原来的2倍,即以 x代x,得到函数:=sin( x+ ).
答案:=sin(x+ ) =sin( x+ )
5.函数=lg(csx-sinx)的定义域是_______.
解析:由csx-sinx>0 csx>sinx.由图象观察,知2π- <x<2π+ (∈Z).
答案:2π- <x<2π+ (∈Z)
●典例剖析
【例1】 (1)=csx+cs(x+ )的最大值是_______;
(2)=2sin(3x- )的图象的两条相邻对称轴之间的距离是_______.
剖析:(1)=csx+ csx- sinx
= csx- sinx= ( csx- sinx)
= sin( -x).
所以ax= .
(2)T= ,相邻对称轴间的距离为 .
答案:
【例2】 (1)已知f(x)的定义域为[0,1),求f(csx)的定义域;
(2)求函数=lgsin(csx)的定义域.
剖析:求函数的定义域:(1)要使0≤csx≤1,(2)要使sin(csx)>0,这里的csx以它的值充当角.
解:(1)0≤csx<1 2π- ≤x≤2π+ ,且x≠2π(∈Z).
∴所求函数的定义域为{x|x∈[2π- ,2π+ ]且x≠2π,∈Z}.
(2)由sin(csx)>0 2π<csx<2π+π(∈Z).又∵-1≤csx≤1,∴0<csx≤1.故所求定义域为{x|x∈(2π- ,2π+ ),∈Z}.
评述:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.
【例3】 求函数=sin6x+cs6x的最小正周期,并求x为何值时,有最大值.
剖析:将原函数化成=Asin(ωx+ )+B的形式,即可求解.
解:=sin6x+cs6x=(sin2x+cs2x)(sin4x-sin2xcs2x+cs4x)=1-3sin2xcs2x=1- sin22x= cs4x+ .
∴T= .
当cs4x=1,即x= (∈Z)时,ax=1.
深化拓展
函数=tan(ax+θ)(a>0)当x从n变化为n+1(n∈Z)时,的`值恰好由-∞变为+∞,则a=_______.
分析:你知道函数的周期T吗?
答案:π
●闯关训练
夯实基础
1.若函数f(x)=sin(ωx+ )的图象(部分)如下图所示,则ω和 的取值是
A.ω=1, = B.ω=1, =-
C.ω= , = D.ω= , =-
解析:由图象知,T=4( + )=4π= ,∴ω= .
又当x= 时,=1,∴sin( × + )=1,
+ =2π+ ,∈Z,当=0时, = .
答案:C
2. f(x)=2cs2x+ sin2x+a(a为实常数)在区间[0, ]上的最小值为-4,那么a的值等于
A.4B.-6C.-4D.-3
解析:f(x)=1+cs2x+ sin2x+a
=2sin(2x+ )+a+1.
∵x∈[0, ],∴2x+ ∈[ , ].
∴f(x)的最小值为2×(- )+a+1=-4.
∴a=-4.
答案:C
3.函数= 的定义域是_________.
解析:-sin ≥0 sin ≤0 2π-π≤ ≤2π 6π-3π≤x≤6π(∈Z).
答案:6π-3π≤x≤6π(∈Z)
4.函数=tanx-ctx的最小正周期为____________.
解析:= - =-2ct2x,T= .
答案:
5.求函数f(x)= 的最小正周期、最大值和最小值.
解:f(x)=
= = (1+sinxcsx)
= sin2x+ ,
所以函数f(x)的最小正周期是π,最大值是 ,最小值是 .
6.已知x∈[ , ],函数=cs2x-sinx+b+1的最大值为 ,试求其最小值.
解:∵=-2(sinx+ )2+ +b,
又-1≤sinx≤ ,∴当sinx=- 时,
ax= +b= b=-1;
当sinx= 时,in=- .
培养能力
7.求使 = sin( - )成立的θ的区间.
解: = sin( - )
= ( sin - cs ) |sin -cs |=sin -cs
sin ≥cs 2π+ ≤ ≤2π+ (∈Z).
因此θ∈[4π+ ,4π+ ](∈Z).
8.已知方程sinx+csx=在0≤x≤π上有两解,求的取值范围.
解:原方程sinx+csx= sin(x+ )=,在同一坐标系内作函数1= sin(x+ )与2=的图象.对于= sin(x+ ),令x=0,得=1.
∴当∈[1, )时,观察知两曲线在[0,π]上有两交点,方程有两解.
评述:本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法.
探究创新
9.已知函数f(x)=
(1)画出f(x)的图象,并写出其单调区间、最大值、最小值;
(2)判断f(x)是否为周期函数.如果是,求出最小正周期.
解:(1)实线即为f(x)的图象.
单调增区间为[2π+ ,2π+ ],[2π+ ,2π+2π](∈Z),
单调减区间为[2π,2π+ ],[2π+ ,2π+ ](∈Z),
f(x)ax=1,f(x)in=- .
(2)f(x)为周期函数,T=2π.
●思悟小结
1.三角函数是函数的一个分支,它除了符合函数的所有关系和共性外,还有它自身的属性.
2.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误.
●教师下载中心
教学点睛
1.知识精讲由学生填写,起到回顾作用.
2.例2、例4作为重点讲解,例1、例3诱导即可.
拓展题例
【例1】 已知sinα>sinβ,那么下列命题成立的是
A.若α、β是第一象限角,则csα>csβ
B.若α、β是第二象限角,则tanα>tanβ
C.若α、β是第三象限角,则csα>csβ
D.若α、β是第四象限角,则tanα>tanβ
解析:借助三角函数线易得结论.
答案:D
【例2】 函数f(x)=-sin2x+sinx+a,若1≤f(x)≤ 对一切x∈R恒成立,求a的取值范围.
解:f(x)=-sin2x+sinx+a
=-(sinx- )2+a+ .
由1≤f(x)≤
1≤-(sinx- )2+a+ ≤
a-4≤(sinx- )2≤a- .①
由-1≤sinx≤1 - ≤sinx- ≤
(sinx- ) = ,(sinx- ) =0.
∴要使①式恒成立,
只需 3≤a≤4.
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
忘不了的笑声教学设计
邹忌讽齐王纳谏优秀教学设计
四年级旋转与角教学设计
咏雪教学设计十五篇)
忘不了的笑声教学设计
邹忌讽齐王纳谏优秀教学设计
四年级旋转与角教学设计
一年级池上优秀的教学设计范文(通用五篇)
杨氏之子的教学设计模板
观察物体教学设计(苏教版国标第五册数学两篇)
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
景阳冈教学设计模板
教学设计中的教学目标方案
有余数的除法教学设计
四年级语文下册练习6教学设计
春潮教学设计
咏雪教学设计十五篇)
体验物联网教学设计
初中英语教学设计模板
猫教学设计优秀案例
识字6教学设计
小学语文观摩课慈母情深教学设计
名著导读三国演义教学设计模板
小熊住山洞第二课时优秀教学设计
桂林山水优质教学设计汇总
光影变幻的教学设计