教学目标:
知识目标1.经历探索圆的中心对称性和旋转不变性的过程;.
2.理解圆心角的概念,并掌握圆心角定理。
3.理解“弧的度数等于它所对的圆心角的度数”这一性质。
能力目标体验利用旋转变换来研究圆的性质的思想方法,进一步培养学生观察、猜想、证明及应用新知解决问题的能力。
情感目标用生活的实例激发学生学习数学的浓厚兴趣,体验数学与生活的密切联系,坚定学好数学的信心,进一步培养学生尊重知识、尊重科学,热爱生活的积极心态。
教学重点:圆心角定理
教学难点:根据圆的旋转不变性推导出圆心角定理
教学过程:
一、设疑引新
你可曾想过:水杯的盖子为什么做成圆形?利用了圆的什么性质?
前面我们已经探究了圆的轴对称性,利用这一性质我们得到了垂径定理及逆定理,它帮助解决了圆的许多问题,那么圆还有哪些性质呢?
二、探究新知
1、圆绕圆心旋转180°后,仍与原来的圆重合——圆是中心对称图形,圆心是对称中心。
2、圆绕圆心旋转任意一个角度后,仍与原来的圆重合——圆的旋转不变性。集体备课3.1《圆心角》解决课前疑问。
3、顶点在圆心的角叫圆心角。如图,集体备课3.1《圆心角》就是一个圆心角。判别下列各图中的角是不是圆心角,并说明理由。
4、探究圆心角定理:
集体备课3.1《圆心角》(1)实验操作:设集体备课3.1《圆心角》,把∠COD连同集体备课3.1《圆心角》、弦CD绕圆心O旋转,使OA与OC重合,结果发现OB与OD重合,弦AB与弦CD重合,集体备课3.1《圆心角》和集体备课3.1《圆心角》重合。
(2)让学生猜想结论,并证明。
(3)同圆变等圆,结论成立。
5、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等(补充)。
几何表述:∵∠AOB=∠COD∴集体备课3.1《圆心角》=集体备课3.1《圆心角》,AB=CD,OE=OF
分析定理:。去掉“在同圆或等圆中”定理还成立吗?
反例:两个同心圆,显然弦AB与弦CD不相等,集体备课3.1《圆心角》与集体备课3.1《圆心角》不相等。
集体备课3.1《圆心角》提醒学生注意:定理的成立必须有大前提“在同圆或等圆中”。
6、应用新知:
例已知:如图,∠1=∠2.求证:集体备课3.1《圆心角》
【变式】已知:如图,∠1=∠2.
求证:AC=BD.,∠OBC=35°,
求弧AB的度数和弧BC的度数。
9、拓展提高:
集体备课3.1《圆心角》三、课堂小结
通过本节课的学习,你对圆有哪些新的认识?
1.圆是中心对称图形,圆具有旋转不变性。
2.、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等
3、弧的度数:
1?的圆心角所对的弧叫做1?的弧。
弧的度数等于它所对的圆心角的度数。
四、作业布置
作业本3.3.1节
7、再探新知:你能将⊙O二等分吗?
用直尺和圆规你能把⊙O四等分吗?
你能将任意一个圆六等分吗?
若按刚才这种方法把一个圆分成360份,则每一份的圆心角的度数是1?,因为相等的圆心角所对的弧相等,所以每一份的圆心角所对的弧也相等。
我们把1?的圆心角所对的弧叫做1?的弧。弧的度数等于它所对的圆心角的'度数。
集体备课3.1《圆心角》写法:若∠COD=80°,则CD的度数是80°
注:不可写成集体备课3.1《圆心角》=∠COD=80°,但可写成集体备课3.1《圆心角》=m∠COD=80°
8、巩固新知:如图:已知在⊙O中,∠AOB=45°
教学目标:
1、进一步掌握推理证明的方法,发展演绎推理能力。
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。
3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:
引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,
延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。
∴四边形ACDE是直角梯形。
∴S梯形ACDE=(a+b)(a-b)=(a+b)2
∴∠ABE=180°-∠ABC-∠EBD=180°-90°=90°
AB=BE
∴S△ABC=c2
∵S梯形ACDE=S△ABE+S△ABC+S△BED,
∴(a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+ab
∴a2+b2=c2
反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?
已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。
证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则
A’B’2+A’C’2=B’C’2(勾股定理)
∵AB2+AC2=BC2,A’B’=AB,A’C’=AC,
∴BC2=B’C’2
∴BC=B’C’
∴△ABC≌△A’B’C’(SSS)
∴∠A=∠A’=90°(全等三角形的对应角相等)
因此,△ABC是直角三角形。
定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
四个太阳第一课时教学设计范文
鹬蚌相争的教学设计范文
普罗米修斯盗火教学设计
不愿长大的小姑娘教学设计模板
四个太阳第一课时教学设计范文
鹬蚌相争的教学设计范文
普罗米修斯盗火教学设计
一年级池上优秀的教学设计范文(通用五篇)
杨氏之子的教学设计模板
观察物体教学设计(苏教版国标第五册数学两篇)
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
景阳冈教学设计模板
教学设计中的教学目标方案
有余数的除法教学设计
四年级语文下册练习6教学设计
春潮教学设计
不愿长大的小姑娘教学设计模板
课文两轩辩日优秀教学设计范文
花钟教学设计十五篇)
雪猴教学设计2篇
母亲的恩情第二课时优秀教学设计范文
池上优秀的教学设计
小学生文言文学弈教学设计分析
妈妈,不要送伞来教学设计范文
节日的大街教学设计之一
四个太阳第一课时的教学设计