六年级上册教案数学最新范文

莉落老师

六年级上册教案数学最新范文1

一、学习内容:

教师提供 小学数学六年级下册14页----17页。

二、学生提供:

等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

三、学习目标:

1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

四、重点难点:

重点:圆锥的体积计算。

难点圆锥的体积公式推导。

关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。

五、学习准备:

等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

长方形的长等于三角形的底,长方形的宽等于三角形的高。

你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?

三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

六、布置课前预习

点拨自学

1、圆柱和圆锥有哪些相同的地方?

2、圆柱和圆锥有哪些不同的地方?

3、圆锥的体积和圆柱的体积有什么关系呢?

请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。

七、交流解惑:

它们的底面积相等,高也相等

圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……

动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流

组际解疑

老师点拨

八、合作考试

1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底

面半径约3分米,高约2.7分米,求沙堆的体积。

(只列式不计算)

3、在打谷场上,有一个近似于圆锥的小麦堆,测

底面直径是4米,高是1.2米。每立方米小麦约

重735千克,这堆小麦大约有多少千克?

(只列式不计算)

4、如图,求这枝大笔的体积。

(单位:厘米)

(只列式不计算)

5、将一个底面半径是2分米,高是4分米的圆柱

形木块,削成一个的圆锥,那么削去的体积

是多少立方分米?(口算)

九、自我总结:

通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。

十、教学反思:

本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

六年级上册教案数学最新范文2

一、教学内容:

第2~3页例1、例2。及相应的“做一做”,练习一第1题

二、教学目标:

1.使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。

2.使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。

三、教学重点:

知道正数、负数和0之间的关系。

四、教学难点:

在现实情境中了解负数的产生与应用。

五、教学准备:

多媒体课件,温度计。

六、教学过程:

㈠、创设情境,初步认识负数。

1.情境引入:中央电视台天气预报节目片头。

出示例1:宜昌、哈尔滨的温度。

2、提问:你能知道些什么信息?

学生回答:宜昌是零上16度,哈尔滨是零下16度

3、引导:宜昌和哈尔滨的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?

4、请会的学生介绍写法、读法。同时在图片下方出示:16℃(+16℃)-16℃

师问:你们怎么知道的?

5、小结并板书:“+16”这个数读作正十六,书写这个数时,只要在以前学过的数16的前面加一个正号,“+16”也可以写成“16”;“-16”这个数读作负十六,书写时,可以写成“-16”。

6、通过“零上16摄氏度”和“零下16摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的提出,让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求。同时,学生已有的生活经验,使他们能很快联想到在“16”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。

㈡、进一步体验负数,了解正、负数与0的关系

1、课件出示例2直观图,银行取款与存款。

2、师:你从图中能知道些什么?你能用今天所学的知识表示取款预存款吗?

3、学生尝试表达,并说含义。

4、小结:存入2000元用+2000表示取出500元用—500表示,两个量正好相反,正数表示存入,负数表示取出。

㈢、归纳正数和负数。

1、通过银行取款与存款,存入2000元用+2000表示,取出500元用—500表示则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。

师引导:观察这些数,你能把它们分类吗?

2、请学生移动贴纸独立分类,汇报。

师问:你为什么这样分?

小结:像+16、19、+2000、、6.3这样的数都是正数,像-16、-、-7、-500这样的数都是负数。正数都大于0,负数都小于0。0既不是正数也不是负数。(完成板书)

㈣、练习题

(1)完成第4页第1题。

(2)完成第4页第2题

提问:读一读下面的海拔高度,你知道些什么?(都是负数,低于海平面或比0小)

(3)完成第8页“练习一”第1题。

先读一读,指出下列各数中的正数、负数,并把它们填入相应的圈内。

提问:

①0为什么不写?(0既不是正数,也不是负数)

②观察这些正数,你发现了什么?(正数可以是整数、小数或分数。我们以前学过的除0以外的数都是正数)

③你是怎样理解负数的?(负数要小于0,可以是整数、小数或分数)

完成第8页“练习一”第2、3题。

七、教学结束:

总结:本节课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,认识到了负数在生活中的实际应用是客观存在和非常广泛的。

在习题中增加了小数和分数,通过练习让学生体会过去已学过的数(除0外)都是正数,沟通新旧知识的内在联系。

六年级上册教案数学最新范文3

一、教学目标:

1、首先带动课堂气氛

2、教会学生什么是面积。

3、学习圆柱体侧面积和表面积的含义。

4、能够求圆柱的侧面积和表面积的方法。

二、教学重点:

动手操作展开圆柱的侧面积

三、教学难点:

圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

四、教具准备:

圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

五、教学过程 :

(一)、 创设情境,引起兴趣。

出示:牛奶盒,纸箱,可比克。

提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

(2)制作这些包装盒,至少需要多大面积的材料?(指名说)

师:谁能说说上一节课你学过圆柱体的哪些知识?

生:........

师:请同学们拿出你自制的圆柱体模型,动手摸一摸

生:动手摸圆柱体

师:谁能说一说你摸到的是哪些部分?

生:.......

师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

(二)、 探索交流,解决问题。

圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题) 提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形) (展开的形状可能是长方形、平行四边形、正方形等)

1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

2.操作活动:

(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

(2)观察这个图形各部分与圆柱体茶叶罐有什么关系? 独立操作后,与小组里的同学交流

3.小组交流 能用已有的知识计算它的面积吗?

4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

板书:

长方形的面积= 长 × 宽

↓ ↓ ↓

圆柱的侧面积 =底面周长× 高

所以,圆柱的侧面积=底面周长×高

S 侧= C×h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

师:如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

(四)、练习

求圆柱的侧面积(只列式不计算)

1。 底面周长是1.6米,高是0.7米

2。 底面直径是2分米,高是45分米

3。 底面半径是3.2厘米,高是5分米

(五)研究圆柱表面积

1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

2、动画:圆柱体表面展开过程

3、圆柱体的表面积怎样求呢? 得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2 4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

(六),巩固应用,内化提高

1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒 提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米) 重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

六、教学结束:

布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

六年级上册教案数学最新范文4

教学目标

1 .理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

2 .能正确地计算圆柱的表面积。

3 会解决简单的实际问题。

4 .初步培养学生抽象的逻辑思维能力。

教学重点

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程

一 复习旧知。

1 计算下面圆柱的侧面积。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

2 求出下面长方体、正方体的表面积。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3 讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二 新课导入。

1 教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

2 学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3 反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

4 教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5 说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三 新课教学。

1 例2 一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

2 学生尝试练习,教师巡回检查、指导。

3 反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)

(2)底面积:3.14×2×2=12.56(平方分米)

(3)表面积:56.52+12.56=81.64(平方分米)

答:它的表面积是81.64平方分米。

4 学生质疑。

5 教师强调答题过程的清楚完整和计算的正确。

6 教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四 反馈练习:试一试。

1 学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

2 学生交流练习结果(注意计算结果的要求)。

3 教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五 拓展练习

1 教师发给学生教具,学生分组进行数据测量。

2 学生自行计算所需的材料。

3 计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六 巩固练习。

1 计算下面图形的表面积(单位:厘米)(略)

2 计算下面各圆柱的表面积。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3 一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4 一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

六年级上册教案数学最新范文5

教学目标:

1.体会引入百分数的必要性,理解百分数的意义,会正确读百分数。在具体情境中,解释百分数的意义,体会百分数与日常生活的密切联系。

2.经历从实际问题中抽象出百分数的过程,培养学生探究归纳能力。

3.让学生在操作和探索过程中体会成功的快乐。

教学重难点:

理解百分数的意义

教学过程:

一、联系实际,激趣引入

1、师:同学们,你们喜欢旅游吗?

生:喜欢!

师:老师也非常喜欢旅游,并且去过好多地方。 (出示老师外出旅游的照片,并加以介绍)

【设计意图】:以自己为例,展示旅游照片,抓住学生的注意力,激发学生的学习兴趣 师:谁来说说,你们都去过哪些名胜古迹? 师:今天老师要带领大家一起到山东的风景区去游览一下,好吗? (出示信息窗1)

2、师:谁知道,这几幅图分别是山东的哪些城市的什么景区?

生:……

师:读一读下面的几句话和统计表,你知道了什么?你能提出什么问题?

【设计意图】:从旅游景区有关数据的统计导入新课,能发现百分数在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

二、体验合作,自主探究

(一)教学百分数的读法

师:16%、9%、9.3%怎么来读?

生:16%读作:百分之十六 9%读作:百分之九 9.3%读作:百分之九点三 (全班齐读,另举例指名读)

【设计意图】:学生对百分数的读法有了一定的了解。在指导读出百分数的基础上让学生自己任意举出几个百分数让学生读,便于加深对百分数读法的印象。

(二)教学百分数的意义

1、师:它们各表示什么意思?

(以16%为例,小组讨论,指明解释9%、9.3%)

得出结论:表示一个数是另一个数百分之几的数叫做百分数。

师:百分数也叫做百分比或百分率。

(板书:百分数)

师:百分数通常不写成分数形式,而是在原来的分子后面加上%来表示。

2、想一想,你在生活中那些地方见到过百分数?

【设计理念】:从学生身边的生活中寻找百分数的信息,提高学生学习百分数的兴趣。渗透百分数的实际运用的普遍性。让学生感知生活中处处有数学。

(三)练习巩固,知识延伸

自主练习

1、使学生体会小数、分数、百分数之间的联系与区别。特别注意分数与百分数的区别:分数既可以表示一个具体的数,也可以表示两个数之间的关系;百分数只能表示两个数之间的关系。

2、课后练习第二题,仔细阅读题中的相关信息,说一说每个百分数表示的意义。

【设计意图】:在语言叙述的过程中,加深学生对百分数意义的理解,更好地对知识进行巩固。

3、课后练习第3、4题,尤其注意100%意义的理解。

【设计意图】:练习设计走进生活、课后延伸,研究我们身边的数学,在进行计算巩固练习的同时,渗透“生活中处处有数学”,培养学生的问题意识,自主解决生活中的数学问题。

4、课后第5题,联系已学过的分数的意义,把全国人口数看作单位“1”(100%),汉族人口占总数的92%,少数人口则占1-92%=8%

板书设计:

山东假日游 百分数