圆周角的教学设计

黄飞老师

圆周角的教学设计

  教学目标

  1、 理解圆周角的概念,掌握圆周角定理及其推论,并会运用它进行论证和计算.

  2、 经历圆周角定理的证明,使学生了解分类证明命题的思想和方法,体会类比、分类的教学方法.

  3、 通过学生主动探索圆周角定理及其推论,合作交流的学习过程,学习成长的快乐及数学的应用价值.

  教学重点难点

  教学重点 圆周角的概念、圆周角定理及其应用.

  教学难点 圆周角定理的分类证明.

  教学过程

  一、情境导入

  足球场上的数学 在足球比赛中,甲带球向对方球门PQ进攻,当他冲到A点时,同伴乙已经冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.问哪一种射门方式进球的可能性大?(提示:仅从射门角度考虑,射门角度越大越好.)

  设计意图:让学生感受到生活之中的数学问题,激发学习兴趣.

  二、自我探究

  1、圆周角的概念

  观察图形 APB的顶点P从圆心O移动到圆周上(电脑动画).

  教师指出APB是圆周角.由圆心角顺利迁移到圆周角.

  学生对比圆心角的定义,尝试给出圆周角的定义:顶点在圆上,并且两边都和圆相交的角,叫圆周角.

  辨析概念 判别下列各图形中的角是不是圆周角,并说明理由.

  思考特征 圆周角具有什么特征?

  明确结论:①顶点在圆上;②两边都和圆相交.

  设计意图:让学生能形象地感知圆周角,理解圆周角概念。

  2、合作交流,动手操作

  学生先动手画圆周角,再相互交流、比较,探究圆心与圆周角的位置关系,并请学生代表上讲台用投影展示交流成果.教师再利用电脑,动画展示圆心与圆周角可能具有的不同的位置关系,并由学生归纳出圆心与圆周角具有三种不同的位置关系:

  ① 圆心在圆周角的一边上;

  ② 圆心在圆周角的内部;

  ③ 圆心在圆周角的外部.

  设计意图:学生动手画圆周角,进一步熟悉圆周角,另一方面,预先探究出圆心与圆周角的三种位置关系,将难点分散,为后面证明圆周角定理作铺垫,降低证明难度.

  3、实验探究

  探究问题 同弧所对的圆周角与圆心角有什么关系?

  试验操作

  学生利用手中学案,当圆心角分别是锐角(450)、钝角(1100)和平角(1800)时,动手测量出弧BC所对的圆周角BAC和BDC的度数,比较它们的大小,然后在优弧BAC上任意取一点E,测量BEC的度数,探究同弧所对的圆周角与圆心角的关系.

  猜想结论 同弧所对的圆周角等于它所对的圆心角的一半.

  电脑验证 教师改变圆心角BOC的度数,再通过电脑测量弧AB所对的圆周角BAC和BDC的度数,进一步验证学生的猜想.

  设计意图:学生合作交流,探究并猜想同弧所对的圆周角与圆心角的数量关系,教师再通过电脑测量来验证,让学生进一步明确它们之间的关系.

  4、证明定理

  命题分析 命题:(电脑显示)同弧所对的圆周角等于它所对的圆心角的一半.

  学生说出已知、求证.

  问题:圆心与圆周角的'三种位置关系中,哪一种位置关系最特殊?此时你能不能证明A= BOC?

  三种情况:

  第一种情况:圆心在圆周角一边上;

  第二种情况:圆心在圆周角的内部;

  第三种情况:圆心在圆周角的外部。

  定理证明 学生证明第一种情形(圆心在圆周角的一边上的情形):

  作直径AD.

  ∵OA=OC

  A=C

  又∵BOC=C

  BOC=2A

  即A= BOC

  利用基本图形(小红旗)及其对应的基本结论,引导学生证明当圆心在圆周角内部时的情形:

  ∵BAD= BOD,CAD= COD

  BAD+CAD= BOD+ COD

  即BAC= BOC

  情形(3)的证明推导,学生自己完成,教师用电脑展示.

  电脑动画展示:等圆中等弧的问题通过移动、旋转转化为同圆中中同弧的问题,从而得到圆周角定理:

  圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

  进一步,由学生分析出,当圆心角是180时,圆周角为90,再通过电脑动画展示,当圆心角逐渐变为180时,对应的圆周角变为90,从而得到圆周角定理的推论:

  圆周角定理推论 半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.

  设计意图:教师引导,学生证明出圆周角定理及其推论,验证其猜想的正确性,激发学生学习数学的兴趣与成就感.

  三、应用巩固

  例1 如图,如果A=60,则BOD=____,BDC=____

  例2 如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是一定相等的角?

  拓展 若2=60,判断△BCD的形状并证明你的结论.

  设计意图:及时巩固本节课所学的核心知识,并注重知识的延伸,拓宽学生思维的深度和广度.

  四、解决问题:

  解决问题情境中的足球问题:过点P 、B、Q三点作圆,建立相应数学模型,学生分析题意,给出问题的答案:

  解法1:连结PD.

  ∵PDQ, A

  A

  将球传给乙,让乙射门好.

  解法2:连结CQ.

  ∵PCQ, A

  A

  将球传给乙,让乙射门好.

  设计意图:学以致用,数学来源于生活,服务于生活,运用数学解决问题.

  五、总结拓展

  1.本节学习的数学知识是圆周角的定义和圆周角定理及其推论.

  2.本节学习的数学思想是分类讨论和转化思想.

  设计意图:自我总结反思自己本节课的收获,养成良好的学习习惯。

  六、作业巩固

  设计意图:数学是做出来的,即要学又要练。运用本节课所学知识进行检测与反馈,进一步巩固、掌握所学新识