高一数学《集合的运算》教学设计

王明刚老师

高一数学《集合的运算》教学设计

  教学类型:探究研究型

  设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.

  教学过程:

  一、片头

  (20秒以内)

  内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。

  第 1 张PPT

  12秒以内

  二、正文讲解

  (4分20秒左右)

  1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”

  上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?

  那么,这个规律是偶然的,还是一个恒等式呢?

  第 2 张PPT

  28秒以内

  2.规律的验证:

  试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用

  第 3 张PPT

  2分10 秒以内

  3.抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。

  而这个规律就是180年前著名的英国数学家德摩根发现的.。

  为了纪念他,我们将它称为德摩根律。

  原来我们通过自己的探索也能发现这么伟大的数学规律。

  第 4 张PPT

  30秒以内

  4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算

  第 5 张PPT

  1分20秒以内

  三、结尾

  (20秒以内)

  通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。

  希望你在今后的学习中,勇于探索,发现更多有趣的规律。

  第 6 张PPT

  10秒以内

  教学反思(自我评价)

  学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好.