分数除法的教学设计

黄飞老师

  分数除法的教学设计1

  教学目标:

  1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。

  2、掌握分数除以整数的计算方法。

  3、通过教学,培养学生的知识迁移能力和抽象、概括能力。

  4、使学生明确知识间是相互联系的。

  教学重难点:

  重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  难点:

  掌握分数除以整数的计算方法。

  教学过程:

  一、导入

  1、例1。

  2、改编条件和问题,用除法计算。

  二、教学实施

  1、初步理解分数除法的意义。

  师问:如果将一盒重八分之五千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

  学生试着列出算式。

  引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

  2、归纳概括分数除法的意义。

  3、分数除以整数。

  (1)例1引导学生分析并用图表示数量关系。

  师问:求每份是这张纸的几分之几,怎样列式?

  (2)列式计算。

  师问:从图上看,结果是多少?这个结果是怎样得到的?

  学生折一折,算一算。

  (3)理清思路。

  思路一:把五分之四平均分成2份,就是把4个五分之一平均分成2份,每份是2个五分之一,也就是五分之二。

  思路二:把五分之四平均分成2份,求每份是多少,就是求五分之四的二分之一是多少。

  (4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

  5、巩固练习。完成教材第30页“做一做”。

  三、课堂作业设计

  1、填空。

  (1)分数除法的意义与整数除法的意义(   ),都是已知(    )与(    ),求(     )的运算。

  (2)分数除以整数(0除外),等于分数(    )这个整数的(    )。

  2、计算并验算。

  分数除法的教学设计2

  教学内容:北师大版小学五年级数学下册第55~56页

  教学目标:

  1.体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2..培养学生动手动脑能力,以及判断、推理能力。

  3.培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:体验分数除以整数的计算方法,并能正确的计算。

  教学难点:分数除以整数计算法则的推导过程。

  教学准备:长方形纸片、彩笔。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的`意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  1引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  2)质疑问难,理解新知

  师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  3)比较归纳,发现规律。

  师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)