“十字相乘法”教学设计

孙小飞老师

  【教学内容】8.15十字相乘法(第一课时,课本P.49~P.51)

  【教学目标】1、能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式;

  2、通过课堂交流,锻炼学生数学语言的表达能力;

  3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质.

  【教学重点】能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式.

  【教学难点】把x2+px+q分解因式时,准确地找出a、b,使a·b=q;a+b=p.

  【教学过程】

  一、复习导入

  1.口答计算结果:

  (1)(x+2)(x+1)(2)(x+2)(x-1)(3)(x-2)(x+1)(4)(x-2)(x-1)

  (5)(x+2)(x+3)(6)(x+2)(x-3)(7)(x-2)(x+3)(8)(x-2)(x-3)

  2.问题:你是用什么方法将这类题目做得又快又准确的呢?

  [在多项式的乘法中,有(x+a)(x+b)=x2+(a+b)x+ab]

  二、探索新知

  1、观察与发现:

  等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的`形式转化成和差形式,进行的是乘法计算.

  反过来可得x2+(a+b)x+ab=(x+a)(x+b).

  等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解.

  2、体会与尝试:

  ①试一试因式分解:x2+4x+3;x2-2x-3

  将二次三项式x2+4x+3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3+1=4,恰好等于一次项系数,所以用十字交叉线表示:

  x2+4x+3=(x+3)(x+1).

  x+3

  x+1

  3x+