教学内容:课本应用题例7及练一练
教学目标:
1、通过教学,引导学生认识“相遇问题(求其中的一个速度)”的特征,理解数量关系,并能解答求其中的一个速度问题的应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:“求其中的一个速度问题”的特征和解题方法。
教学难点:“求其中的一个速度问题”的特征和解题方法。
教学用具:多媒体课件一套
教学过程:
一、激趣引入,复习旧知
今天小红打的去离家3600米的少年宫学习舞蹈,6分钟就到了少年宫,汽车每分钟行多少米?
学生口答列式:3600/6=600(米)。
复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:速度=路程/时间)
一辆客车和一辆货车一小时共行115千米,其中一辆客车每小时行55千米,一辆货车每小时行多少千米?
二、揭示特征,化解难点
读读 议议
出示:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。小明每分钟走60米,小红每分钟走多少米?
提问:你知道相遇的时候,小明行了多少米?小红行了多少米?
如果只知道:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。你能求出什么?
460/5=92(米)
三、解答例题,理清思路
1、尝试例7(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。
①将上题中“经过5分钟相遇。”改成“经过4分钟相遇。”,其余条件不变,仍然小红每分钟走多少米?”学生读题后尝试练习。
②评讲板演,理清解题思路,概括两种方法。
解法一:
分步计算:两人每分共行多少米?
460/4=115(米)
小红每分种走了多少米?
115-60=55米
综合算式:460/4-60
=115-60
=55(米)
解法二:
分步计算:相遇时小明行多少米?
60*4=240米
相遇时小红行多少米?
460-240=220米
小红每分行多少米?
220/4=55米
综合算式:(460-40*4)/4
=220/4
=55米
2、质疑小结,揭示课题。
①想一想,这两种解法有什么联系?
②概括“求其中的一个速度”的特征和解题方法。
③揭示课题。
四、深化理解,应用拓展
1、基本练习。
用两种方法完成练一练 第1题
比一比 哪一种方法简单一些?
2、变式练习
甲乙两台机床同时加工580个零件,经过10小时正好完成。甲机床每小时加工28个,乙机床每小时多少个?
五、课堂总结
今天这节课你有什么收获?
六、课堂作业
练一练 第2、3、4、5
教学内容:课本应用题例6及练一练
教学目标:
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:“求相遇时间问题”的特征和解题方法。
教学难点:“求相遇时间问题”的特征和解题方法。
教学用具:多媒体课件一套
教学过程:
一、激趣引入,复习旧知
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟 ?
2、口头列式 1500/100=15分钟
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间= 路程/速度)
二、学习新课
1、例6教学
出示:两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?
读题分析
思考:这里的460米是几个人走的?
两人是怎 样走的?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)
学生尝试练习
评讲板演,理清解题思路,概括解题方法
教师板书:60+55=115米
460/115=4分钟
综合算式:460/(60+55)=460/115=4分钟
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少 米?
揭示课题:求相遇时间
2、试试
甲乙两台机床同时加工580个零件,甲机床每小时加工28个,乙机床每小时加工30个,加工完这批零件需要多少小时?完成时各加工了多少个零件?
三、变式深化
1、对比练习
⑴两人同时从相距2400的两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过几分钟两人相遇?
⑵两人同时从两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过3钟两人相遇,两地相距多少米?
比一比你能找到两题之间的联系吗?
2、变式应用
自行车商店要装配2500辆自行车,一个组每天装配52辆,另一个组每天装配48辆。两个组同时装配,完成任务要多少天?
四、小结
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业
练一练的第2——5题
板书设计 :
求相遇时间
两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?
60+55=115米
460/115=4分钟
综合算式:460/(60+55)=460/115=4分钟
第2课时相遇问题
年月日编号:
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重难点:
1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。
2、理解相向运动中求相遇时间问题的解决方法。
教学过程:
一、复习旧知
1、说一说速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
二、探索新知
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
板书课题:相遇问题。
2、创设“结伴出游”的情境。
淘气和笑笑相约出去游玩。
3、引导学生找出有关的数学信息,解决第一个问题。
第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
4、画线段图帮助学生理解第二、第三个问题。
第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。
三、试一试
先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。
四、练一练
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。
五、知识回顾,全课总结
今天这节课我们学习了什么?
六、布置作业
教学反思:
教学内容:课本练习七(二)
教学目标:
1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能解答稍复杂的相遇问题应用题。
2、培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:“求相遇问题”的特征和解题方法。
教学用具:幻灯、小黑板
教学过程:
一、基本练习
1、口头列式
工人们修一条长120米的路,每天修15米,几天修完?
一辆汽车5小时各地区320千米,每小时行多少千米?
火车每小时行85千米,行425千米要多少小时?
要求学生说出基本的数量关系式
2、指名板演 其余同练习
⑴甲乙两架飞机分别从两城去同一个城市,甲机每分钟飞行9千米,乙机每分钟飞行12千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?
⑵两个水管同时向游泳池中注水,大管每小时放水16吨,小管每小时放水12吨。放满224吨水要多少小时?
要求学生说清解题的思路
二、变式练习 加深理解
⑴改变上1的条件:
甲乙两架飞机分别从两城去同一个城市,每分钟飞行9千米,乙机每分钟比甲机多飞行3千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?
让学生分析:与1 有什么不同,要先求什么?
列式计算:9+3=12千米
(9+12)*40=840千米
⑵改变上2的条件:
两个水管同时向游泳池中注水,大管3小时放水48吨,小管每小时放水12吨。放满224吨水要多少小时?
让学生分析:与2 有什么不同,要先求什么?
列式计算:48/3=16吨
224/(16+12)=8小时
⑶两辆汽车同时从相距190千米的甲乙两地相对开出,每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?
你能表演一下这种情况吗? 其实是什么以生了变化?
学生尝试练习
列式计算:(190-95)/(45+50)
⑷甲乙两地相400千米。一辆客车从甲地开往乙地,每小时行68千米,在客车行了28千米以后,一辆货车从乙地出发开往甲地,每小时行56千米。货车开出后几小时两车相遇?
提问:现在的情况又发生了什么变化?
哪一段路程是两车同时行的?请你在图上表示出来?
学生尝试练习
列式计算:(400-28)/(68+56)
讨论:刚才3、4两题我们都可以通过转化变成相遇问题,然后进行计算。
三、课堂作业
练习七(二)第9——14题
教学目标:
1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能正确熟练地解答相遇问题应用题。
2、沟通“相遇问题”三种类型的内在联系,提高学生的分析和判断能力。
教学重点:
沟通“相遇问题”三种类型的内在联系
教学用具:
幻灯、小黑板
教学过程:
一、组题练习沟通联系
1、练练
⑴两列火车分别从甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米,3小时后相遇。甲乙两站相距多少千米?
⑵两列火车分别从474千米的甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米。几小时后相遇?
⑶两列火车分别从474千米的甲乙两站同时相对开出,3小时后相遇。一列火车每小时行75千米,另一列火车每小时行多少千米?
2、说说
教师板书:
⑴(75+83)
提问:先求什么?再求什么?
⑵474/(83+75)=3小时
提问:先求什么?再求什么?
⑶474/3—75=83千米
提问:先求什么?再求什么?
3、比一比
这3题的条件和问题有什么相同和不同的地方?
教师要求学生填表:
条件
算式
一共行的路程
相遇的时间
速度
第一题
第二题
第三题
归纳
二、变式练习加深理解
1、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行的路程是小青的2倍,两人20分钟相遇。甲乙两地相距多少米?
提问:应先求什么?为什么?
学生练习(60+60
还有别的方法吗?
2、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行120米,两人20分钟后还相距400米。甲乙两地相距多少米?
学生练习:400+(60+120)
你能说说“两人20分钟后还相距400米”这句话的意思吗?
三、课堂练习
课本练习八(一)第2——7题
教学目标:
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
教学重点:
掌握求路程的相遇问题的解题方法。
教学难点:
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
教学时间:一课时
教具准备:实物投影仪、多媒体CAI、小黑板
教学过程( ):
一、复习
1、列式计算
(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?
(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?
2、板出关系式: 速度×时间=路程
二、引入
过去,我们研究的是一个物体运动时速度 、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的关系。
三、新授
1、教学准备题
(1) 点击课件中准备题 出示题目
(2) 学生理解题意。
(3) 找出出发时间、地点、运动方向。
(4)点击热键 和 强调出发时间和运动方向。
(5) 用课件演示两人同时从两地向对方走去,引导学生思考会出什么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6) 利用课件出示准备题的表格,指导学生填表格的一、二行并课件演示填空内容。
(7) 请一学生上来利用交换性课间完成表格第三行的填写。
(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样?
c、 两人所行的路程与全路程有什么关系?
(4) 学生试做。
(5) 用电脑课件演示解题思路并讲评。
(6) 学生看书、质疑。
(7) 小结:我们解例5时用了哪两种方法?
三、巩固练习
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?
(1)20xx米 (2)1000米 (3)无法确定。
四、全课总结
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
五、聪明题 。
小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?
一、 分析教材,理清思路
本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。
本节课的教学目标是:
1、 知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。
2、 能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。
3、 情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的.喜悦。
在实施知识目标过程中,重点是让学生在做中发现规律,从而理解相遇问题的数量关系,掌握解答方法。
二、 优选教法,注重学法
学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。
三、 优化程序,突出主体
本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。
(一) 创设情境
1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)
2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)
[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]
(二)实践探究
1、理解意义
(1)揭示课题相遇问题
(2)制定目标看到这个课题,你想研究哪些内容?
(教师依学生所说归纳出学习目标并板书:意义、规律、应用)
(3) 联系生活提问:在实际生活中还有哪些情况属于相遇问题?
(4) 归纳小结要想出现相遇的情况应具备哪些条件?
(板书:两个物体、同时、两地、相对、相遇)
(5) 教师指出本节课侧重研究两个物体同时行进的规律。
[数学源于生活,生活中充满数学,让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]
2、 实践操作(小组合作)
(1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。
(2)每行进一次把数据填入表中。
行的次数 红色线段长 兰色线段长 两色线段长度和 两色线段距离
1 3 2 5 10
2 6 4 10 5
3 9 6 15 0
(3)观察表中的数据,研讨发现了什么?
[设计这一实践活动的目的,是让学生在做中感受两物体同时从两地相向而行的运动规律:
①两者之间的距离越来越小,直至为0,即相遇了;
②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;
③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]
3、 应用规律
例:(媒体出示)90页,例3
(1) 自己选择学习方式
A 独立完成(鼓励用多种解法)
B 借助教材(依据小标题列式解答)
C 请教同学
(2) 指名板演,讲解思路
[在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]
(三) 巩固深化
1、 口答:
先说说解答思路,再列式计算目的是巩固新知。
小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分钟两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)
2、 自选让学生依个人掌握知识情况,选择练习题。
(1)练习十八 1、2
(2)两辆汽车同时从一个地方向相反的方向开出,甲车平均 每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?
3、 编题:
小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。
[设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]
(四) 课后小结
谈一谈本节课有什么收获?
【学习目标】
知识与技能:学会分析相遇问题的数量关系,掌握相遇问题求路程的解题方法。
过程与方法:模拟相遇问题中两个物体的运动过程,亲身体验知识形成的过程。
【学习重点】
掌握相遇问题求路程的解题方法。
【学习难点】
分析相遇问题的数量关系,理解不同的方法解答。
【学习过程】
一、知识铺垫
小萍每分钟走65米,从家出发 6分钟可以到栈桥。小萍家到栈桥有多少米?
思考:用什么方法计算?根据什么 ?
导:今天,我们将在这个知识的基础上研究一种新的数学问题。(揭题:相遇问题)
二、探索新知
1、初步感知,理解题意
小萍和小明同时从家去栈桥,小萍每分钟走65米,小明每分钟走75米,经过6分钟两人在栈桥相遇。他们两家相距多少米?
思考:(1)从题中知道了什么信息?
(2)两道题有什么不同?
2、学生表演,加深理解
同时、相遇、相距(学生上台表演)
思考:小萍走了( )分钟?小明走了( )分钟?他们同时走了( )分钟?也就是从开始到相遇,经过了( )分钟?
(生汇报师补充完成线段图)
列式计算:
方法一: 方法二:
—————————— ——————————
—————————— ——————————
—————————— ——————————
答: ——————————。 答:——————————。
3、小组交流,探索方法
要求:①说说你是怎样列式的;
②说清楚算式里每一步算出的是什么;
③记住用手指指着你列的式子说。
4、集体交流
师小结两种方法。
5、看书质疑,提高认识
师:这样的题目,我们称为相遇问题,看书本P63,想一想有没有不明白的地方?
质疑:(65+75)×6中没有小括号,行吗?
三、巩固练习
1、小方和小丽同时从家出发,经过8分钟两人在少年宫相遇,小方每分钟走70米,小丽每分钟走60米。她们两家相距多少米?
2、两列火车分别从甲乙两地同时相对开出,5小时后相遇。甲车每小时行110千米,乙车每小时行100千米。甲乙两地间的路程是多少千米?
3、拓展练习
甲、乙两车同时从同一车站向相反方向开出,甲车每小时行70千米,乙车每小时行55千米,开出3小时,两车相距多少千米?
五、课堂总结
通过这节课的学习,你有什么收获?
课堂检测
1、两列火车分别从两站同时相向开出,甲车每小时行驶60千米,乙车每小时行驶70千米,经过5小时在途中相遇,两站相距多少千米?
2、张丽和李云同时从学校向相反方向回家,张丽每分钟走80米,李云每分钟走60米,经过10分钟,她们同时到家,她们两家相距多少米?
3、甲、乙两艘轮船同时从甲、乙两地相对开出,甲船每小时行驶25千米,乙船每小时行驶15千米,经过10小时相遇,甲、乙两地相距多少千米?
4、小青和小红同时从自己家走向学校,小青每分钟走60米,小红每分钟走65米,两人走了2分钟时还相距125米,她们两家相距多少米?
设计思路:
本课时是在学生学习〈〈义务教育课程标准验教科书〉〉五年级上册四单元的基础上设计的,旨在将学生的解题思路与方法繁华、条理化。掌握等量关系,形成思维模式和优化和解题模式。
在本册四单元中,根据数量关系而得到的两积之和(其中一个因数相同),从而引出ab+ac=(a+b)c的形式,这一类习题均与学生熟知的相遇问题有联系。正基于此,期望通过熟练掌握相遇问题的解题思路,利用迁移规律,力求能运用这一思路解决与之特征相似的问题。
学生是学习的主体,站在他们的立场上,他们更喜欢“动态”的课程,他们更易于接受与生活紧密联系、触手可及的问题,同时,一旦知识深深烙入他们的脑海,只要适时点拨与梳理,更易于掌握与之相近、相临的问题。因此,本课设计,通过学生爱动、爱玩、爱表现的特点,通过一系列走、演、操作与交流等到形式,力求“走近”、“走进”生活,让学生去体验、去感受数学,积极主动吸收知识,实现知识的理解、掌握与升华。达成轻松学习、快乐学习、灵活高效的目的。
教学内容:
相遇问题及运用相遇问题解题思路解决生活中的实际问题
教学目标:
1、通过让学生亲身体验,建立并理解相遇问题的基本数量关系,并能结合实际问题描述数量关系。
2、运用迁移规律,将相遇问题解题思路运用于与之相似的问题之中,能将具有相遇问题特征的一系列问题转化成相遇问题去分析、去思考、去高效解决。
3、随着问题的解决,让学生感受到数学就在身边,使他们热爱数学,享受问题解决时的成就感。
教学重、难点:
运用相遇问题的解题思路解决具有其特征的数学问题。
教学准备:
老师准备:相遇问题演示器、玩具车、实物卡片
学生准备:玩具车、实物卡片
教学过程:
一、创设情景,导入新课:
1、提问:乘法分配律用字母应该臬表示,你能用语言描述吗?(为相遇问题的两种基本选题关系的概括奠定基础)
2、请最后一排的一名同学走向讲台,同时老师沿直线迎上去,当与该生相遇时提问:
我俩现在已经怎样——(相遇)(用生活中的场景理解、感 知什么是相遇)
请思考后回答:我俩在刚才这一过程中,什么相同,什么不同,能建立一个怎样的等量关系。(建立“甲行路程+乙行路程=两人行的总路程”)
二、建立模型:
1、建立相遇问题等量关系
(1)如果刚才我走了5秒,每秒行0.6米,后排的同学每秒行0.8米,出发时我们相距多少米?(感兴趣的问题更利于学生思考,他们会积极主动去解决问题
根扰刚才建立的等量关系,结合这里的条件,你能把它变得具体一点?
(2)通过引导得出:
老师速度 明间+学生速度=距离
(老师速度+学生速度) 时间=距离
速度和 时间=距离
(3)同桌交流:这样列的依据是什么,怎样描述这些等量关系。(将生活语言转化成数学语言)
(4)你能解决这个问题吗
2、类题强化
请两名学生表演(其他学生用玩具车演示)
小明和小东从相距560米的两地出发,相对而行,经过6分钟相遇,如果小明每分钟行75米,小东每分钟行多少米?
(1)台上台下学一演示后,请学生建立等量关系并提问:
你能建立几种。建立后引导学生间交流(学生观察表演,自已动手操作,能更深刻掌握知识)
(2)尝试解决问题,老师引导提问:你有什么发现:刚才是路程不知道,现在是速度不知道,怎么办呢?(可以设小东每分钟 米)
(3)你能解决这个问题吗?
3、建立模型
让我们来总结一下行走中产生的这一类问题吧。
甲行速度 时间+乙行速度 时间=距离
(甲行速度+乙行速度) 明间=距离
速度和 时间=距离
4、描述模型
同桌相互描述理解这几个等量关系
教学内容:课本应用题例5及练一练
教学目标:
1、通过教学,引导学生认识“相遇问题(求相遇路程)”的特征,理解数量关系,并能解答相遇问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:“相遇问题”的特征和解题方法。
教学难点:“相遇问题”的特征和解题方法。
教学用具:多媒体课件一套
教学过程:
一、激趣引入,复习旧知
1、根据已知条件解答问题。
电脑演示一位学生边走边唱上学的情景。
“我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。”
学生提出问题:“你知道我家到学校有多远吗?”
2、学生口答列式:70×4=280(米)。
复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:速度时间路程)
二、揭示特征,化解难点
1、想想,说说
电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识“相遇问题”的特征。
①两个学生是怎么上学的?
(板书:同时相对相遇)
②“相遇”的意思懂吗?请两个学生上台合作表演一下。
2、填填,议议
①介绍人物及行走的速度和时间。
小明每分走70米,小芳每分走60米,有一天,他们约好,从家里同时出发,对而行,3分钟后恰好在校门口相遇。
②分组合作,完成以下表格:
比一比,看哪个组填得又对又快?
走的时间
小明走的路程(米)
小芳走的路程(米)
两人所走路程的和(米)
1分
2分
3分
③分组汇报表中所填数据。
走的时间
小明走的路程(米)
小芳走的路程(米)
两人所走路程的和(米)
1分
70
60
130
2分
140
120
260
3分
210
180
390
④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对“相遇问题”特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。
“130米是什么?”——表示两人每分所走的路程和即“速度和”(板书:速度和)
“260米是怎么得来的?”——渗透两种方法即:140+120,130×2。同时说“2分”是“相遇时间”。(板书:相遇时间)
“390米是怎么得到的?”——强调两种方法,即把各自的路程相加210+180);用速度和乘相遇时间(130×3)。
“390米表示什么?”——两人3分钟所走路程的和,实际上就是两家之间的离。
三、解答例题,理清思路
1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。
①将上题中“同时行3分钟”改成“同时行4分钟”,其余条件不变,仍然求两家相距多远?”学生读题后尝试练习。
②评讲板演,理清解题思路,概括两种方法。
先求两人4分钟各走多少米。
⑴分步列式解答70×4=280(米)
60×4=240(米)
280+240=520(米)
⑵综合列式解答70×4+60×4
=280+240
=520(米)
先求两人1分钟一共走多少米。
⑴分步列式解答70+60=130(米)
130×4=520(米)
⑵综合列式解答(70+60)×4
=130×4
=520(米)
2、质疑小结,揭示课题。
①想一想,这两种解法有什么联系?
②概括“相遇问题”的特征和解题方法。
③揭示课题。
这两种解法都是利用速度×时间=路程这一数量关系式。不过,第一种方法是用各自的速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的主要内容——“相遇问题”(板书:相遇问题),决这样的问题可以用两种方法。
四、深化理解,应用拓展
1、基本练习。
用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?
2、变式练习。
电脑演示小明和小芳放学的情景。
①认识“相背而行”(板书:相背)
②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?
揭示“相背而行”和“相对而行”求总路程时的解题思路是一样的。
3、拓展练习。
结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。
对话实录如下:
张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。
李经理:知道了,张教授,你车子的速度怎样啊?
张教授:大概每小时行70千米吧!
李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!
张教授:杭州见!一路平安!
李经理:好,一路平安,杭州见!
分组合作,进行探究。
①请同学们认真听,仔细看,从对话中能捕捉到哪些信息?
②根据刚才捕捉的信息,能解决哪些问题?比一比,看哪个组提出的问题多?
③汇报提出的问题,交流解决的方法。
④生活中的行程问题,是不是一定都是这样?有没有别的情况?
4、全课总结。
今天这节课主要学习了什么内容?你获得什么本领?
同学们,只要你们留心观察,善于思考,就会发现许多数学问题,刚才大家出的问题,都有一定价值。有些问题现在我们可以解决了,有些问题还需要续学习,深入研究,将来去解决。
五、课堂作业
练一练第1——5题
板书设计:
相遇问题
同时相对(背)相遇
速度时间路程
(和)(相同)(和)
⑴70×=280(米)⑶70+60=130(米)
60×4=240(米)130×4=520(米)
280+240=520(米)
⑵70×4+60×4⑷(70+60)×4
=280+240=130×4
=520(米)=520(米)
答:两家相距520米。
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
小学一面五星红旗教学设计
幼儿园安全教育教学设计:阳台
“尺有所短,寸有所长”四年级教学设计
人教版四年级语文观潮教学设计范文
小学一面五星红旗教学设计
幼儿园安全教育教学设计:阳台
“尺有所短,寸有所长”四年级教学设计
一年级池上优秀的教学设计范文(通用五篇)
杨氏之子的教学设计模板
观察物体教学设计(苏教版国标第五册数学两篇)
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
景阳冈教学设计模板
教学设计中的教学目标方案
有余数的除法教学设计
四年级语文下册练习6教学设计
春潮教学设计
人教版四年级语文观潮教学设计范文
语文练习2的教学设计范例
找春天公开课教学设计(通用12篇)
咏雪教学设计
教学设计1:植树的牧羊人
语言活动快乐的幼儿园的教学设计
“倾听心声,刻画心理”——作文讲评课教学设计
比尾巴优秀教学设计(通用五篇)
大家的事情大家做教学设计
易经的智慧教学设计范文