《相遇问题》教学设计

李盛老师

《相遇问题》教学设计1

  教学内容:课本应用题例7及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求其中的一个速度)”的特征,理解数量关系,并能解答求其中的一个速度问题的应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求其中的一个速度问题”的特征和解题方法。

  教学难点:“求其中的一个速度问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  今天小红打的去离家3600米的少年宫学习舞蹈,6分钟就到了少年宫,汽车每分钟行多少米?

  学生口答列式:3600/6=600(米)。

  复习“速度”、“时间”、“路程”三者之的数量关系。

  (板书:速度=路程/时间)

  一辆客车和一辆货车一小时共行115千米,其中一辆客车每小时行55千米,一辆货车每小时行多少千米?

  二、揭示特征,化解难点

  读读 议议

  出示:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。小明每分钟走60米,小红每分钟走多少米?

  提问:你知道相遇的时候,小明行了多少米?小红行了多少米?

  如果只知道:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。你能求出什么?

  460/5=92(米)

  三、解答例题,理清思路

  1、尝试例7(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

  ①将上题中“经过5分钟相遇。”改成“经过4分钟相遇。”,其余条件不变,仍然小红每分钟走多少米?”学生读题后尝试练习。

  ②评讲板演,理清解题思路,概括两种方法。

  解法一:

  分步计算:两人每分共行多少米?

  460/4=115(米)

  小红每分种走了多少米?

  115-60=55米

  综合算式:460/4-60

  =115-60

  =55(米)

  解法二:

  分步计算:相遇时小明行多少米?

  60*4=240米

  相遇时小红行多少米?

  460-240=220米

  小红每分行多少米?

  220/4=55米

  综合算式:(460-40*4)/4

  =220/4

  =55米

  2、质疑小结,揭示课题。

  ①想一想,这两种解法有什么联系?

  ②概括“求其中的一个速度”的特征和解题方法。

  ③揭示课题。

  四、深化理解,应用拓展

  1、基本练习。

  用两种方法完成练一练 第1题

  比一比 哪一种方法简单一些?

  2、变式练习

  甲乙两台机床同时加工580个零件,经过10小时正好完成。甲机床每小时加工28个,乙机床每小时多少个?

  五、课堂总结

  今天这节课你有什么收获?

  六、课堂作业

  练一练 第2、3、4、5

《相遇问题》教学设计2

  教学内容:课本应用题例6及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求相遇时间问题”的特征和解题方法。

  教学难点:“求相遇时间问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟 ?

  2、口头列式 1500/100=15分钟

  3、复习“速度”、“时间”、“路程”三者之的数量关系。

  (板书:时间= 路程/速度)

  二、学习新课

  1、例6教学

  出示:两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?

  读题分析

  思考:这里的460米是几个人走的?

  两人是怎 样走的?

  一份钟两人一共行了多少米?

  (第三问时:用课件演示帮助,学生理解)

  学生尝试练习

  评讲板演,理清解题思路,概括解题方法

  教师板书:60+55=115米

  460/115=4分钟

  综合算式:460/(60+55)=460/115=4分钟

  质凝:求相遇的时间应先求什么,再求什么?

  你知道吗?相遇时他们各行了多少 米?

  揭示课题:求相遇时间

  2、试试

  甲乙两台机床同时加工580个零件,甲机床每小时加工28个,乙机床每小时加工30个,加工完这批零件需要多少小时?完成时各加工了多少个零件?

  三、变式深化

  1、对比练习

  ⑴两人同时从相距2400的两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过几分钟两人相遇?

  ⑵两人同时从两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过3钟两人相遇,两地相距多少米?

  比一比你能找到两题之间的联系吗?

  2、变式应用

  自行车商店要装配2500辆自行车,一个组每天装配52辆,另一个组每天装配48辆。两个组同时装配,完成任务要多少天?

  四、小结

  今天这节课主要学习了什么内容?你获得什么本领?

  五、课堂作业

  练一练的第2——5题

  板书设计 :

  求相遇时间

  两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?

  60+55=115米

  460/115=4分钟

  综合算式:460/(60+55)=460/115=4分钟

《相遇问题》教学设计3

  第2课时相遇问题

  年月日编号:

  教学目标:

  1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  教学重难点:

  1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

  2、理解相向运动中求相遇时间问题的解决方法。

  教学过程:

  一、复习旧知

  1、说一说速度、时间和路程三者之间的关系。

  2、应用。

  (1)一辆汽车每小时行驶40千米,5小时行驶多少千米?

  (2)一辆汽车每小时行驶40千米,200千米要行几小时?

  二、探索新知

  1、揭示课题。

  师:数学与交通密切相联。今天,我们一起来探索相遇问题。

  板书课题:相遇问题。

  2、创设“结伴出游”的情境。

  淘气和笑笑相约出去游玩。

  3、引导学生找出有关的数学信息,解决第一个问题。

  第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

  4、画线段图帮助学生理解第二、第三个问题。

  第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。

  三、试一试

  先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。

  四、练一练

  1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。

  2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

  五、知识回顾,全课总结

  今天这节课我们学习了什么?

  六、布置作业

  教学反思:

《相遇问题》教学设计4

  教学内容:课本练习七(二)

  教学目标:

  1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能解答稍复杂的相遇问题应用题。

  2、培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求相遇问题”的特征和解题方法。

  教学用具:幻灯、小黑板

  教学过程:

  一、基本练习

  1、口头列式

  工人们修一条长120米的路,每天修15米,几天修完?

  一辆汽车5小时各地区320千米,每小时行多少千米?

  火车每小时行85千米,行425千米要多少小时?

  要求学生说出基本的数量关系式

  2、指名板演 其余同练习

  ⑴甲乙两架飞机分别从两城去同一个城市,甲机每分钟飞行9千米,乙机每分钟飞行12千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?

  ⑵两个水管同时向游泳池中注水,大管每小时放水16吨,小管每小时放水12吨。放满224吨水要多少小时?

  要求学生说清解题的思路

  二、变式练习 加深理解

  ⑴改变上1的条件:

  甲乙两架飞机分别从两城去同一个城市,每分钟飞行9千米,乙机每分钟比甲机多飞行3千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?

  让学生分析:与1 有什么不同,要先求什么?

  列式计算:9+3=12千米

  (9+12)*40=840千米

  ⑵改变上2的条件:

  两个水管同时向游泳池中注水,大管3小时放水48吨,小管每小时放水12吨。放满224吨水要多少小时?

  让学生分析:与2 有什么不同,要先求什么?

  列式计算:48/3=16吨

  224/(16+12)=8小时

  ⑶两辆汽车同时从相距190千米的甲乙两地相对开出,每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?

  你能表演一下这种情况吗? 其实是什么以生了变化?

  学生尝试练习

  列式计算:(190-95)/(45+50)

  ⑷甲乙两地相400千米。一辆客车从甲地开往乙地,每小时行68千米,在客车行了28千米以后,一辆货车从乙地出发开往甲地,每小时行56千米。货车开出后几小时两车相遇?

  提问:现在的情况又发生了什么变化?

  哪一段路程是两车同时行的?请你在图上表示出来?

  学生尝试练习

  列式计算:(400-28)/(68+56)

  讨论:刚才3、4两题我们都可以通过转化变成相遇问题,然后进行计算。

  三、课堂作业

  练习七(二)第9——14题

《相遇问题》教学设计5

  教学目标:

  1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能正确熟练地解答相遇问题应用题。

  2、沟通“相遇问题”三种类型的内在联系,提高学生的分析和判断能力。

  教学重点:

  沟通“相遇问题”三种类型的内在联系

  教学用具:

  幻灯、小黑板

  教学过程:

  一、组题练习沟通联系

  1、练练

  ⑴两列火车分别从甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米,3小时后相遇。甲乙两站相距多少千米?

  ⑵两列火车分别从474千米的甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米。几小时后相遇?

  ⑶两列火车分别从474千米的甲乙两站同时相对开出,3小时后相遇。一列火车每小时行75千米,另一列火车每小时行多少千米?

  2、说说

  教师板书:

  ⑴(75+83)*3=474千米

  提问:先求什么?再求什么?

  ⑵474/(83+75)=3小时

  提问:先求什么?再求什么?

  ⑶474/3—75=83千米

  提问:先求什么?再求什么?

  3、比一比

  这3题的条件和问题有什么相同和不同的地方?

  教师要求学生填表:

  条件

  算式

  一共行的路程

  相遇的时间

  速度

  第一题

  第二题

  第三题

  归纳小结:不管是哪一类总是先求速度和。

  二、变式练习加深理解

  1、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行的路程是小青的2倍,两人20分钟相遇。甲乙两地相距多少米?

  提问:应先求什么?为什么?

  学生练习(60+60*2)*20

  还有别的方法吗?

  2、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行120米,两人20分钟后还相距400米。甲乙两地相距多少米?

  学生练习:400+(60+120)*20

  你能说说“两人20分钟后还相距400米”这句话的意思吗?

  三、课堂练习

  课本练习八(一)第2——7题

《相遇问题》教学设计6

  教学目标:

  1、了解相遇问题的特点,并学会解答求路程的相遇问题。

  2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

  3、培养学生学习数学的兴及趣创新意识。

  教学重点:

  掌握求路程的相遇问题的解题方法。

  教学难点:

  理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

  教学时间:一课时

  教具准备:实物投影仪、多媒体CAI、小黑板

  教学过程( ):

  一、复习

  1、列式计算

  (1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?

  (2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?

  2、板出关系式: 速度×时间=路程

  二、引入

  过去,我们研究的是一个物体运动时速度 、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的关系。

  三、新授

  1、教学准备题

  (1) 点击课件中准备题 出示题目

  (2) 学生理解题意。

  (3) 找出出发时间、地点、运动方向。

  (4)点击热键 和 强调出发时间和运动方向。

  (5) 用课件演示两人同时从两地向对方走去,引导学生思考会出什么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

  (6) 利用课件出示准备题的表格,指导学生填表格的一、二行并课件演示填空内容。

  (7) 请一学生上来利用交换性课间完成表格第三行的填写。

  (8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?

  (9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。

  2、教学例5。

  (1)点击新课出示例5。

  (2)理解题意。

  (3)四人小组讨论:

  a、 两人是怎样走向学校的?

  b、 4分钟后两人怎样?

  c、 两人所行的路程与全路程有什么关系?

  (4) 学生试做。

  (5) 用电脑课件演示解题思路并讲评。

  (6) 学生看书、质疑。

  (7) 小结:我们解例5时用了哪两种方法?

  三、巩固练习

  1、学生做课本第59页的第1题和第2题。

  2、利用课件出示选择题:

  两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?

  (1)20xx米 (2)1000米 (3)无法确定。

  四、全课总结

  1、今天学了什么内容?

  2、解决这样的问题,我们用了哪几种方法?

  3、质疑。

  五、聪明题

  小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?

《相遇问题》教学设计7

  一、 分析教材,理清思路

  本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

  本节课的教学目标是:

  1、 知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

  2、 能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。

  3、 情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的.喜悦。

  在实施知识目标过程中,重点是让学生在做中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

  二、 优选教法,注重学法

  学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

  三、 优化程序,突出主体

  本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。

  (一) 创设情境

  1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)

  2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

  [建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

  (二)实践探究

  1、理解意义

  (1)揭示课题相遇问题

  (2)制定目标看到这个课题,你想研究哪些内容?

  (教师依学生所说归纳出学习目标并板书:意义、规律、应用)

  (3) 联系生活提问:在实际生活中还有哪些情况属于相遇问题?

  (4) 归纳小结要想出现相遇的情况应具备哪些条件?

  (板书:两个物体、同时、两地、相对、相遇)

  (5) 教师指出本节课侧重研究两个物体同时行进的规律。

  [数学源于生活,生活中充满数学,让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]

  2、 实践操作(小组合作)

  (1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。

  (2)每行进一次把数据填入表中。

  行的次数 红色线段长 兰色线段长 两色线段长度和 两色线段距离

  1 3 2 5 10

  2 6 4 10 5

  3 9 6 15 0

  (3)观察表中的数据,研讨发现了什么?

  [设计这一实践活动的目的,是让学生在做中感受两物体同时从两地相向而行的运动规律:

  ①两者之间的距离越来越小,直至为0,即相遇了;

  ②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;

  ③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]

  3、 应用规律

  例:(媒体出示)90页,例3

  (1) 自己选择学习方式

  A 独立完成(鼓励用多种解法)

  B 借助教材(依据小标题列式解答)

  C 请教同学

  (2) 指名板演,讲解思路

  [在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]

  (三) 巩固深化

  1、 口答:

  先说说解答思路,再列式计算目的是巩固新知。

  小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分钟两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)

  2、 自选让学生依个人掌握知识情况,选择练习题。

  (1)练习十八 1、2

  (2)两辆汽车同时从一个地方向相反的方向开出,甲车平均 每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?

  3、 编题:

  小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

  [设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

  (四) 课后小结

  谈一谈本节课有什么收获?

《相遇问题》教学设计8

  【学习目标】

  知识与技能:学会分析相遇问题的数量关系,掌握相遇问题求路程的解题方法。

  过程与方法:模拟相遇问题中两个物体的运动过程,亲身体验知识形成的过程。

  【学习重点】

  掌握相遇问题求路程的解题方法。

  【学习难点】

  分析相遇问题的数量关系,理解不同的方法解答。

  【学习过程】

  一、知识铺垫

  小萍每分钟走65米,从家出发 6分钟可以到栈桥。小萍家到栈桥有多少米?

  思考:用什么方法计算?根据什么 ?

  导:今天,我们将在这个知识的基础上研究一种新的数学问题。(揭题:相遇问题)

  二、探索新知

  1、初步感知,理解题意

  小萍和小明同时从家去栈桥,小萍每分钟走65米,小明每分钟走75米,经过6分钟两人在栈桥相遇。他们两家相距多少米?

  思考:(1)从题中知道了什么信息?

  (2)两道题有什么不同?

  2、学生表演,加深理解

  同时、相遇、相距(学生上台表演)

  思考:小萍走了( )分钟?小明走了( )分钟?他们同时走了( )分钟?也就是从开始到相遇,经过了( )分钟?

  (生汇报师补充完成线段图)

  列式计算:

  方法一: 方法二:

  —————————— ——————————

  —————————— ——————————

  —————————— ——————————

  答: ——————————。 答:——————————。

  3、小组交流,探索方法

  要求:①说说你是怎样列式的;

  ②说清楚算式里每一步算出的是什么;

  ③记住用手指指着你列的式子说。

  4、集体交流

  师小结两种方法。

  5、看书质疑,提高认识

  师:这样的题目,我们称为相遇问题,看书本P63,想一想有没有不明白的地方?

  质疑:(65+75)×6中没有小括号,行吗?

  三、巩固练习

  1、小方和小丽同时从家出发,经过8分钟两人在少年宫相遇,小方每分钟走70米,小丽每分钟走60米。她们两家相距多少米?

  2、两列火车分别从甲乙两地同时相对开出,5小时后相遇。甲车每小时行110千米,乙车每小时行100千米。甲乙两地间的路程是多少千米?

  3、拓展练习

  甲、乙两车同时从同一车站向相反方向开出,甲车每小时行70千米,乙车每小时行55千米,开出3小时,两车相距多少千米?

  五、课堂总结

  通过这节课的学习,你有什么收获?

  课堂检测

  1、两列火车分别从两站同时相向开出,甲车每小时行驶60千米,乙车每小时行驶70千米,经过5小时在途中相遇,两站相距多少千米?

  2、张丽和李云同时从学校向相反方向回家,张丽每分钟走80米,李云每分钟走60米,经过10分钟,她们同时到家,她们两家相距多少米?

  3、甲、乙两艘轮船同时从甲、乙两地相对开出,甲船每小时行驶25千米,乙船每小时行驶15千米,经过10小时相遇,甲、乙两地相距多少千米?

  4、小青和小红同时从自己家走向学校,小青每分钟走60米,小红每分钟走65米,两人走了2分钟时还相距125米,她们两家相距多少米?

《相遇问题》教学设计9

  设计思路:

  本课时是在学生学习〈〈义务教育课程标准验教科书〉〉五年级上册四单元的基础上设计的,旨在将学生的解题思路与方法繁华、条理化。掌握等量关系,形成思维模式和优化和解题模式。

  在本册四单元中,根据数量关系而得到的两积之和(其中一个因数相同),从而引出ab+ac=(a+b)c的形式,这一类习题均与学生熟知的相遇问题有联系。正基于此,期望通过熟练掌握相遇问题的解题思路,利用迁移规律,力求能运用这一思路解决与之特征相似的问题。

  学生是学习的主体,站在他们的立场上,他们更喜欢“动态”的课程,他们更易于接受与生活紧密联系、触手可及的问题,同时,一旦知识深深烙入他们的脑海,只要适时点拨与梳理,更易于掌握与之相近、相临的问题。因此,本课设计,通过学生爱动、爱玩、爱表现的特点,通过一系列走、演、操作与交流等到形式,力求“走近”、“走进”生活,让学生去体验、去感受数学,积极主动吸收知识,实现知识的理解、掌握与升华。达成轻松学习、快乐学习、灵活高效的目的。

  教学内容:

  相遇问题及运用相遇问题解题思路解决生活中的实际问题

  教学目标:

  1、通过让学生亲身体验,建立并理解相遇问题的基本数量关系,并能结合实际问题描述数量关系。

  2、运用迁移规律,将相遇问题解题思路运用于与之相似的问题之中,能将具有相遇问题特征的一系列问题转化成相遇问题去分析、去思考、去高效解决。

  3、随着问题的解决,让学生感受到数学就在身边,使他们热爱数学,享受问题解决时的成就感。

  教学重、难点:

  运用相遇问题的解题思路解决具有其特征的数学问题。

  教学准备:

  老师准备:相遇问题演示器、玩具车、实物卡片

  学生准备:玩具车、实物卡片

  教学过程:

  一、创设情景,导入新课:

  1、提问:乘法分配律用字母应该臬表示,你能用语言描述吗?(为相遇问题的两种基本选题关系的概括奠定基础)

  2、请最后一排的一名同学走向讲台,同时老师沿直线迎上去,当与该生相遇时提问:

  我俩现在已经怎样——(相遇)(用生活中的场景理解、感 知什么是相遇)

  请思考后回答:我俩在刚才这一过程中,什么相同,什么不同,能建立一个怎样的等量关系。(建立“甲行路程+乙行路程=两人行的总路程”)

  二、建立模型:

  1、建立相遇问题等量关系

  (1)如果刚才我走了5秒,每秒行0.6米,后排的同学每秒行0.8米,出发时我们相距多少米?(感兴趣的问题更利于学生思考,他们会积极主动去解决问题

  根扰刚才建立的等量关系,结合这里的条件,你能把它变得具体一点?

  (2)通过引导得出:

  老师速度 明间+学生速度=距离

  (老师速度+学生速度) 时间=距离

  速度和 时间=距离

  (3)同桌交流:这样列的依据是什么,怎样描述这些等量关系。(将生活语言转化成数学语言)

  (4)你能解决这个问题吗

  2、类题强化

  请两名学生表演(其他学生用玩具车演示)

  小明和小东从相距560米的两地出发,相对而行,经过6分钟相遇,如果小明每分钟行75米,小东每分钟行多少米?

  (1)台上台下学一演示后,请学生建立等量关系并提问:

  你能建立几种。建立后引导学生间交流(学生观察表演,自已动手操作,能更深刻掌握知识)

  (2)尝试解决问题,老师引导提问:你有什么发现:刚才是路程不知道,现在是速度不知道,怎么办呢?(可以设小东每分钟 米)

  (3)你能解决这个问题吗?

  3、建立模型

  让我们来总结一下行走中产生的这一类问题吧。

  甲行速度 时间+乙行速度 时间=距离

  (甲行速度+乙行速度) 明间=距离

  速度和 时间=距离

  4、描述模型

  同桌相互描述理解这几个等量关系

《相遇问题》教学设计10

  教学内容:课本应用题例5及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求相遇路程)”的特征,理解数量关系,并能解答相遇问题应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“相遇问题”的特征和解题方法。

  教学难点:“相遇问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  1、根据已知条件解答问题。

  电脑演示一位学生边走边唱上学的情景。

  “我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。”

  学生提出问题:“你知道我家到学校有多远吗?”

  2、学生口答列式:70×4=280(米)。

  复习“速度”、“时间”、“路程”三者之的数量关系。

  (板书:速度时间路程)

  二、揭示特征,化解难点

  1、想想,说说

  电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识“相遇问题”的特征。

  ①两个学生是怎么上学的?

  (板书:同时相对相遇)

  ②“相遇”的意思懂吗?请两个学生上台合作表演一下。

  2、填填,议议

  ①介绍人物及行走的速度和时间。

  小明每分走70米,小芳每分走60米,有一天,他们约好,从家里同时出发,对而行,3分钟后恰好在校门口相遇。

  ②分组合作,完成以下表格:

  比一比,看哪个组填得又对又快?

  走的时间

  小明走的路程(米)

  小芳走的路程(米)

  两人所走路程的和(米)

  1分

  2分

  3分

  ③分组汇报表中所填数据。

  走的时间

  小明走的路程(米)

  小芳走的路程(米)

  两人所走路程的和(米)

  1分

  70

  60

  130

  2分

  140

  120

  260

  3分

  210

  180

  390

  ④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对“相遇问题”特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。

  “130米是什么?”——表示两人每分所走的路程和即“速度和”(板书:速度和)

  “260米是怎么得来的?”——渗透两种方法即:140+120,130×2。同时说“2分”是“相遇时间”。(板书:相遇时间)

  “390米是怎么得到的?”——强调两种方法,即把各自的路程相加210+180);用速度和乘相遇时间(130×3)。

  “390米表示什么?”——两人3分钟所走路程的和,实际上就是两家之间的离。

  三、解答例题,理清思路

  1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

  ①将上题中“同时行3分钟”改成“同时行4分钟”,其余条件不变,仍然求两家相距多远?”学生读题后尝试练习。

  ②评讲板演,理清解题思路,概括两种方法。

  先求两人4分钟各走多少米。

  ⑴分步列式解答70×4=280(米)

  60×4=240(米)

  280+240=520(米)

  ⑵综合列式解答70×4+60×4

  =280+240

  =520(米)

  先求两人1分钟一共走多少米。

  ⑴分步列式解答70+60=130(米)

  130×4=520(米)

  ⑵综合列式解答(70+60)×4

  =130×4

  =520(米)

  2、质疑小结,揭示课题。

  ①想一想,这两种解法有什么联系?

  ②概括“相遇问题”的特征和解题方法。

  ③揭示课题。

  这两种解法都是利用速度×时间=路程这一数量关系式。不过,第一种方法是用各自的速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的主要内容——“相遇问题”(板书:相遇问题),决这样的问题可以用两种方法。

  四、深化理解,应用拓展

  1、基本练习。

  用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?

  2、变式练习。

  电脑演示小明和小芳放学的情景。

  ①认识“相背而行”(板书:相背)

  ②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?

  揭示“相背而行”和“相对而行”求总路程时的解题思路是一样的。

  3、拓展练习。

  结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。

  对话实录如下:

  张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。

  李经理:知道了,张教授,你车子的速度怎样啊?

  张教授:大概每小时行70千米吧!

  李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!

  张教授:杭州见!一路平安!

  李经理:好,一路平安,杭州见!

  分组合作,进行探究。

  ①请同学们认真听,仔细看,从对话中能捕捉到哪些信息?

  ②根据刚才捕捉的信息,能解决哪些问题?比一比,看哪个组提出的问题多?

  ③汇报提出的问题,交流解决的方法。

  ④生活中的行程问题,是不是一定都是这样?有没有别的情况?

  4、全课总结。

  今天这节课主要学习了什么内容?你获得什么本领?

  同学们,只要你们留心观察,善于思考,就会发现许多数学问题,刚才大家出的问题,都有一定价值。有些问题现在我们可以解决了,有些问题还需要续学习,深入研究,将来去解决。

  五、课堂作业

  练一练第1——5题

  板书设计:

  相遇问题

  同时相对(背)相遇

  速度时间路程

  (和)(相同)(和)

  ⑴70×=280(米)⑶70+60=130(米)

  60×4=240(米)130×4=520(米)

  280+240=520(米)

  ⑵70×4+60×4⑷(70+60)×4

  =280+240=130×4

  =520(米)=520(米)

  答:两家相距520米。