函数北师大版数学初二上册教案

张东东老师

4.1函数:教案

教学目标:

知识与技能

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

1、 掌握函数概念。

2、 判断两个变量之间的关系是否可看作函数。

3、 能把实际问题抽象概括为函数问题。

教学难点:

1、 理解函数的概念。

2、 能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

《4.1函数》教学过程

一、学生起点分析

在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。

二、教学任务分析

《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。

本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。一次本节课教学目标定位为:

1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;

2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;

3.了解函数的三种表示方法。

4.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;

5.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神

对学生来讲本节课的难点在于对函数概念的理解;

四、教学准备

教具:教材,课件,电脑

学具:教材,笔,练习本

五、教学过程设计

本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业

第一环节:创设情境、导入新课

内容:

展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

意图:

承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

效果:

生活实例,激发了学生的研究热情,起到很好的导入效果。

第二环节:展现背景,提供概念抽象的素材

内容:

问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?

当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?

摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?

问题2.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。随着层数的增加,物体的总数是如何变化的?

问题3。一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.

(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?

(2)给定一个大于-273 ℃的t值,你能求出相应的T值吗?

意图:

通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).

效果:

通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.

第三环节:概念的抽象

内容:

1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:

在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.

4.1函数:同步检测

1.张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,如图是据此情境画出的图象,请你回答下面的问题:

(1)张爷爷是在什么地方碰到老邻居的,交谈了多长时间?

(2)读报栏大约离家多远?

(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?